*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

# Evidence and practice changing treatments in thoracic tumors

Cesare Guida

Ospedale del Mare Napoli



Ospedale del Mare



Gli Studi che hanno cambiato la pratica clinica: Novità 2023

**TABLE 5** ] Lung Cancer Stage Grouping (Eighth Edition)

| T/M | Label             | NO   | N1   | N2   | N3   |
|-----|-------------------|------|------|------|------|
| T1  | Tla ≤ <i>l</i>    | IA1  | IIB  | IIIA | IIIB |
|     | T1b >1-2          | IA2  | IIB  | IIIA | IIIB |
|     | T1c >2-3          | IA3  | IIB  | IIIA | IIIB |
| T2  | T2a Cent, Yisc Pl | IB   | IIB  | IIIA | IIIB |
|     | T2a >3-4          | IB   | IIB  | IIIA | IIIB |
|     | T2b >4-5          | IIA  | IIB  | IIIA | IIIB |
| T3  | T3 >5-7           | IIB  | IIIA | IIIB | IIIC |
|     | T3 Inv            | IIB  | IIIA | IIIB | IIIC |
|     | T3 Satell         | IIB  | IIIA | IIIB | IIIC |
| T4  | T4 >7             | IIIA | IIIA | IIIB | IIIC |
|     | T4 Inv            | IIIA | IIIA | IIIB | IIIC |
|     | T4 Ipsi Nod       | IIIA | IIIA | IIIB | IIIC |
| Ml  | Mla Contr Nod     | IVA  | IVA  | IVA  | IVA  |
|     | M1aPlDissem       | IVA  | IVA  | IVA  | IVA  |
|     | M1b Single        | IVA  | IVA  | IVA  | IVA  |
|     | M1c Multi         | IVB  | IVB  | IVB  | IVB  |



SABR

ROMA 25 GENNAIO 2024

See Table 3 text and legend for expansion of abbreviations.

Gli Studi che hanno cambiato la pratica clinica: Novità 2023

#### THORACIC

Discussion to: Overall survival in low-comorbidity patients with stage I non-small cell lung cancer who chose stereotactic body radiotherapy compared to surgery

Presenter: Brooks V. Udelsman, MD, MHS<sup>a</sup> Invited Discussant: Andrea S. Wolf, MD, MPH<sup>b</sup> Corresponding Author: Brooks V. Udelsman, MD, MHS<sup>a</sup>

See Article page XXX.

#### Presenter: Dr Brooks V. Udelsman



Methods

Udelsman

Overal

non-si



NCDB (2012-2018)





Sociodemographics Dr Andrea S. Wolf (New York, NY). Stev Yang presented a new standard of discussion that I could probably only achieve if you'll take my suggestion to have a Springsteen session. Sterotatic body radiation therapy (SBRT) in an era when SBRT is being

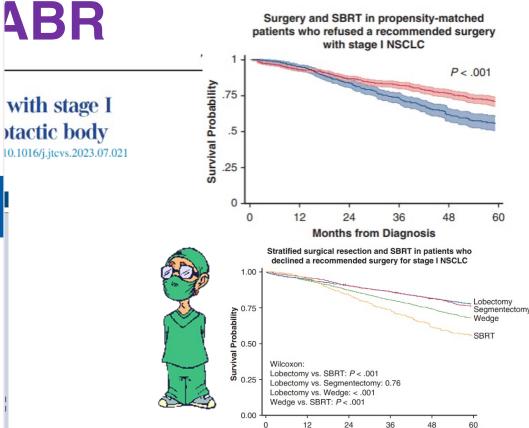
and being offered even to healthy patients, your study is critically important as we need to evaluate outcomes and

assess this for true equipoise. My first question is to highlight a critical point you demonstrated. Nothing is free. Although people tout the tolerability of SBRT, and patients might prefer its noninvasiveness, there are toxicities. The 30- and 90-day mortality as you showed here and in your article were 1.7% and 2.8% for surgery, respectively, but also 0.3% and 1.7% for SBRT and 0 days. We all understand perioperative mortality, but help me understand why SBRT patients die al 3 months.

From the "Division of Thoracic Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Conne, and "New York Mesohelismu Pograme, Department of Thoracic Surgery, The Lealn School of Medicine at Mount Sinai, New York, NY. This discussion concerned at the 100th AATS Annual Meeting: Address for reprints: Brooks V. Udehanan, MD, MHS, 1510 San Paleo Sa, HCC1 Satie 1514. Lon Annelse CA 20033 (Envil) technic used nonsities 1544 (and Annelse CA) 2003 (Envil) technical Waven Celuly

ROMA 23 GENNAIO 2024

Received for publication Sept 22, 2023. J Thorac Cardiowase Surg 2023; ■ 1-2 002-5223/36.00 Copyright © 2023 by The American Association for Thoracie Surgery https://doi.org/10.1016/j.itocs.2023.09.041 Dr Brooks V. Udelsman (New Haven, Com), 1 agree with you completely, nothing is free. We think of SBRT as incredibly safe if in the early-stage period. Now, at 30 days, the mortality is really low, but that may be due to competing risks. It can induce increased stress on the patient, cardiopulmonary risks, all of those, although these patients are fairly healthy. As you get toward 90 days, I think you do start to see more of those complications where you can


get tumor necrosis, involution. And we do see some of those patients. It is not unheard of to have issues, to require tubes, and to have additional morbidity, which can lead to mortality in that group. As you said, it's not free, and we shouldn't think of it that way.

THOR

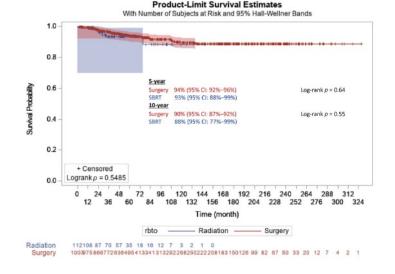
Dr Wolf. I suspect you derived your subset analysis of patients who refued surgery under the assumption that those patients were otherwise similar to those who received surgery. But the refusal of surgery may in and of itself be associated with other confounding poor prognostic clinical demographic features that are also associated with survival. Are you able to tease this out? And if not, how might it impact your results? Dr Udelsman. That's an important point. There were

some differences in these groups that we control for in the propensity match. But patients who underwent SBRT and those who refused surgery in favor of that, clearly, by their clinical teams, tended to have less wealth. They may have had other sociodemographic factors that made it more difficult for them to undergo surgery. They were caring for a disabled family member. They couldn't take time off of work. SBRT is more convenient for patients. All those factors that allow patients to undergo surgery and be able to take that time off also may affect their long-term survival. I think that's important to look at. I think it's important to look at why do patients choose SBRT? That's the next question: Why are patients choosing this over surgery when we know that they're both really safe and we think we have a lot better outcomes? We have to figure that out, and that's going to go back to the clinics and talk to our medical oncology colleagues and our radiation oncology colleagues. Dr Wolf. That's an important point and leads to my third question about multidisciplinary discussion and

The Journal of Thoracic and Cardiovascular Surgery • Volume 
, Number 
1



Associazione Italiana Radioterapia e Oncologia clinica


Gli Studi che hanno cambiato la pratica clinica: Novità 2023



ORIGINAL ARTICLE

Prospective Cohort Study to Compare Long-Term Lung Cancer-Specific and All-Cause Survival of Clinical Early Stage (T1a-b; <20 mm) NSCLC Treated by Stereotactic Body Radiation Therapy and Surgery Journal of Thoracic Oncology Vol. ■ No. ■: ■-■

https://doi.org/10.1016/j.jtho.2023.10.002





*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

#### **SABR OR THERMOABLATION?**

INTERNATIONAL JOURNAL OF HYPERTHERMIA 2023, VOL. 40, NO. 1, 2154577 https://doi.org/10.1080/02656736.2022.2154577



OPEN ACCESS Check for updates

Thermal ablation versus radiotherapy for inoperable stage III non-small cell lung cancer: a propensity score matching analysis

#### ABSTRACT

**Objective:** To compare the survival benefits of thermal ablation (TA) and radiotherapy in inoperable patients with stage III non-small cell lung cancer (NSCLC).

**Method:** A retrospective analysis was conducted using the data from the Surveillance, Epidemiology, and End Results (SEER) program. Propensity score matching (PSM) was conducted to balance potential baseline confounding factors. Survival analyses were conducted using Kaplan–Meier and Cox regression methods.

**Results:** The present study included 33,393 inoperable patients with stage III NSCLC, including 106 patients treated with TA and 33,287 patients treated with radiotherapy. No statistical difference in overall survival (OS) (p = .065) or cancer-specific survival (CSS) (p = .996) was found between the patients treated with TA and those treated with radiotherapy. Using 1:3 matching, a matched cohort of 420 patients (105 patients treated with TA, 315 patients treated with radiotherapy) was identified. The differences in OS (p = .177) and CSS (p = .605) were still not significant between the radiotherapy.

and TA groups after PSM. According to subgroup analyses, TA showed comparable survival benefits in almost all subgroups compared to radiotherapy.

|                         | o-value | Hazard ratio     |                                         |
|-------------------------|---------|------------------|-----------------------------------------|
| Age (years)             |         |                  | 1                                       |
| <65                     | 0.103   | 1.54 (0.92-2.57  |                                         |
| 65-74                   | 0.560   | 0.89 (0.60-1.32  | )                                       |
| 75-84                   | 0.004   | 1.84 (1.21-2.79  | )                                       |
| ≥85                     | 0.321   | 0.70 (0.35-1.41  |                                         |
| Sex                     |         |                  |                                         |
| Male                    | 0.146   | 1.26 (0.92-1.72  | \                                       |
| Female                  | 0.558   | 1.11 (0.78-1.58  |                                         |
| Race                    | 0.556   | 1.11 (0.70-1.50  |                                         |
| White                   | 0.211   | 1.17 (0.91-1.50  |                                         |
|                         |         |                  |                                         |
| Black                   | 0.185   | 1.82 (0.75-4.43  |                                         |
| Others                  | 0.083   | 0.29 (0.07-1.17  | )                                       |
| Laterality              |         |                  |                                         |
| Left                    | 0.270   | 1.25 (0.84-1.87  |                                         |
| Right                   | 0.391   | 1.13 (0.85-1.51  | )                                       |
| Tumor site              |         |                  |                                         |
| Main bronchus           | 0.417   | 1.31 (0.68-2.53  | )                                       |
| Lung lobe               | 0.389   | 1.12 (0.87-1.45  |                                         |
| Lung (NOS)              | 0.985   | 0.99 (0.32-3.08  |                                         |
| Histological gra        |         | 0.00 (0.02 0.00  | / T                                     |
| l/ll                    | 0.819   | 1.05 (0.68-1.62  |                                         |
|                         |         | 1.21 (0.78-1.89  |                                         |
| III/IV                  | 0.389   |                  |                                         |
| Unknown                 | 0.254   | 1.23 (0.86-1.75  | )                                       |
| Pathological typ        |         |                  |                                         |
| SCC                     | 0.287   | 1.18 (0.87-1.59  |                                         |
| ADC                     | 0.416   | 1.17 (0.80-1.73  | )                                       |
| LCC                     | 0.999   | 0.00 (0.00-Inf)  | •                                       |
| Others                  | 0.230   | 5.48 (0.34-87.8) | 2)                                      |
| TNM substage            |         |                  | 5 C C C C C C C C C C C C C C C C C C C |
| IIIA                    | 0.035   | 1.72 (1.04-2.84  | )                                       |
| IIIB                    | 0.593   | 1.07 (0.83-1.40  |                                         |
| T stage                 | 0.000   | (0.000           |                                         |
| T1                      | 0.112   | 1.80 (0.87-3.69  |                                         |
| T2                      | 0.511   | 1.26 (0.64-2.47  |                                         |
| T3                      | 0.828   | 1.16 (0.30-4.47  |                                         |
| T4                      |         |                  |                                         |
|                         | 0.531   | 1.09 (0.83-1.43  | /                                       |
| N stage                 |         |                  |                                         |
| NO                      | 0.657   | 1.08 (0.78-1.49  |                                         |
| N1                      | 0.545   | 0.68 (0.19-2.40  |                                         |
| N2                      | 0.026   | 1.54 (1.05-2.24  | )                                       |
| N3                      | 0.738   | 0.86 (0.37-2.03  | ) —                                     |
| Tumor size              |         |                  |                                         |
| ≤3.0 cm                 | 0.562   | 1.11 (0.79-1.55  | )                                       |
| 3.1–5.0 cm              | 0.068   | 1.63 (0.96-2.74  |                                         |
| 5.1–7.0 cm              | 0.383   | 1.44 (0.63-3.28  |                                         |
| >7.0 cm                 | 0.888   | 0.94 (0.42-2.13  |                                         |
|                         |         | 1.26 (0.70-2.29  |                                         |
| Unknown<br>Chemotherapy | 0.442   |                  |                                         |
| No                      | 0.161   | 1.20 (0.93-1.54  |                                         |
| Yes                     | 0.895   | 1.04 (0.57-1.91  | )                                       |
| Marital status          |         |                  |                                         |
| Married                 | 0.367   | 1.17 (0.84-1.62  | )                                       |
| Not married             | 0.323   | 1.18 (0.85-1.63  |                                         |
| tot marneu              | 0.020   |                  |                                         |
|                         |         |                  | Favors TA Favors Radiothe               |
|                         |         |                  |                                         |



*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

Check for updates

#### Stereotactic Body Radiotherapy for the Management of Early-Stage Non–Small-Cell Lung Cancer: A Clinical Overview

David S. Buchberger, MD<sup>1</sup> and Gregory M.M. Videtic, MDCM<sup>1</sup>

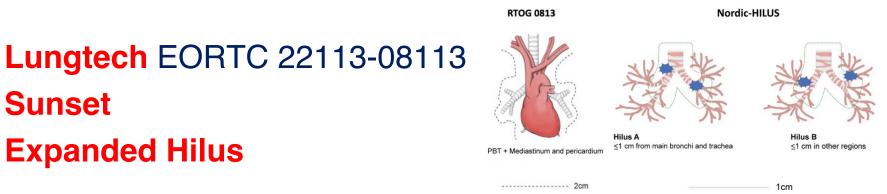
Volume 19. Issue 5 239

| 2 | TABLE | 1. | Selected | Studies | in | Lung | SBRT | for | Farb | v-Stage | Lung | Cancer |
|---|-------|----|----------|---------|----|------|------|-----|------|---------|------|--------|
|   |       |    |          |         |    |      |      |     |      |         |      |        |

| Year | Reference                     | Design   | No. of<br>Patients | Population                 | Dose Schedule                        | F/U                     | LC                                                        | OS                                         | Toxicity                                                                                                                |
|------|-------------------------------|----------|--------------------|----------------------------|--------------------------------------|-------------------------|-----------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 2004 | Onishi et al <sup>21</sup>    | MI RR    | 245                | Stage I<br>NSCLC           | 18-75 Gy in 1-22<br>fractions        | Median: 24<br>months    | LC: 85.5%                                                 | 3-Year, operable, BED $\ge 100$ Gy: 88.4%  | Grade 3 or higher pulmonary<br>toxicity: 2.4%                                                                           |
|      |                               |          |                    | Operable and<br>inoperable | Median BED of 108                    |                         | Local recurrence for<br>BED ≥ 100 Gy:<br>8.1% (LC: 91.9%) | BED < 100 Gy: 69.4%                        | _                                                                                                                       |
| 2007 | Onishi et al <sup>22</sup>    | MI RR    | 257                | Stage I<br>NSCLC           | 18-75 Gy in 1-22<br>fractions        | Median: 38<br>months    | LC: 86.0%                                                 | 5-Year, operable, BED $\geq 100$ Gy: 70.8% | Grade 3 or greater pulmonary<br>toxicity: 5.4%                                                                          |
|      |                               |          |                    | Operable and<br>inoperable | Median BED of 111                    |                         | Local recurrence for<br>BED ≥ 100 Gy:<br>8.4% (LC: 91.6%) | BED < 100 Gy: 30.2%                        |                                                                                                                         |
| 2003 | Timmerman et al <sup>23</sup> | Phase I  | 37                 | T1, T2 NOM0                | Dose escalation to<br>20 Gy in three | Median: 15.2<br>months  | LC: 83.8%                                                 | At a median F/U of 15.2 months, OS: 64.0%  | G3 or higher pulmonary toxicities:<br>5.4%                                                                              |
|      |                               |          |                    | Medically<br>inoperable    | fractions                            |                         | All LFs received <<br>18 Gy per fraction                  | -                                          | No appreciable decline in<br>cardiopulmonary function per<br>examination, laboratory results,<br>PFTs, imaging          |
| 2005 | McGarry et al <sup>24</sup>   | Phase I  | 47                 | T1, T2,<br>NOM0            | Dose escalation as<br>above          | T1 mean: 27.4<br>months | LF: 4/19 T1                                               | NA                                         | G3 toxicity, T2 group with tumors ><br>cm: 3 of 5 patients treated with 2                                               |
|      |                               |          |                    | Medically<br>inoperable    |                                      | T2 mean: 19.1<br>months | LF: 6/28 T2                                               |                                            | Gy per fraction                                                                                                         |
| 2006 | Timmerman et al <sup>25</sup> | Phase II | 70                 | T1, T2,<br>NOMO            | 60-66 Gy in three<br>fractions       | Median: 17.5<br>months  | LC, 2-year: 95.0%                                         | OS, 2-year: 54.7%                          | 2-Year freedom from severe toxicit<br>in peripheral tumors 83.0%;<br>54.0% in central tumors                            |
|      |                               |          |                    | Medically<br>inoperable    |                                      |                         |                                                           |                                            | G3-5: 5 of 48 with peripheral<br>tumors, 10.4%<br>G3-5: 6 of 22 with central tumors<br>27.3%                            |
| 2009 | Fakiris et al <sup>26</sup>   | Phase II | 70                 | T1, T2,<br>NOMO            | 60-66 Gy in three<br>fractions       | Median: 50.2<br>months  | LC, 3-year: 88.1%                                         | OS, 3-year: 42.7%                          | 2-Year freedom from severe toxicit<br>in peripheral tumors 83.0%;                                                       |
|      |                               |          |                    | Medically<br>inoperable    |                                      |                         |                                                           |                                            | 54.0% in central tumors<br>G3-5: 5 of 48 with peripheral<br>tumors, 10.4%<br>G3-5: 6 of 22 with central tumors<br>27.3% |
| 2010 | RTOG 023627                   | Phase II | 55                 | T1, T2,<br>N0M0            | 54 Gy in three<br>fractions          | Median: 34.4<br>months  | LC, 3-year: 97.6%                                         | OS, 3-year: 55.8%                          | G3/4: 16.4% (9 of 55)                                                                                                   |
|      |                               |          |                    | Medically<br>inoperable    | _                                    |                         |                                                           |                                            |                                                                                                                         |
|      |                               |          |                    | Peripheral                 |                                      |                         |                                                           |                                            |                                                                                                                         |

#### DISCUSSION

**SBRT** is a safe, effective, curative, patient-friendly, and cost effective treatment for inoperable early-stage lung cancer, refined over the past 25 years through a number of studies


Its increasing application to the operable population and for complex clinical scenarios will continue to evolve, with integration with CT and IO highly effective cancer cures with minimal treatment-related burden

| 92.7% 05, 5-year: 40.0% G344: 30.9% (17 of 55)                                                                  |
|-----------------------------------------------------------------------------------------------------------------|
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
| 1 year: 30 Gy, OS, 1 year: 75.0% 30 Gy, no toxicity: 92.7%<br>34 Gy, OS, 1 year: 64.0%                          |
| 1-year: 34 Gy, no toxicity: 84.0%                                                                               |
| No G3 or higher toxicity                                                                                        |
| ar LC: 34 Gy, 2-year OS: 61.3% 34 Gy, G3 or higher: 10.3%<br>48 Gy, 2-year OS: 77.7% 48 Gy, G3 or higher: 13.3% |
| ar LC:                                                                                                          |
|                                                                                                                 |
| ar LC: 34 Gy, 5-year OS: 29.6% 34 Gy, G3 or higher: 2.6%                                                        |
| 48 Gy, 5-year OS: 41.1% 48 Gy, G3 or higher: 11.1%<br>ar LC:                                                    |
|                                                                                                                 |
| 96.0% 4-Year OS: 56.0% G3 AEs: 7.7%                                                                             |
| No G4/G5 AEs                                                                                                    |
|                                                                                                                 |
| ar LC: 2-Year OS: 73.0% 30 Gy, thoracic G3 AEs: 16.3%                                                           |
| ar LC: 2-Year OS: 62.0% 60 Gy, thoracic G3 AEs G3: 12.2%                                                        |
| No grade 4/5 AEs                                                                                                |
| 10 Gy per 2-Year OS, 10 Gy per fraction: 75.0% 12 Gy per fraction probability of                                |
| 37.5% 2-Year OS, 12 Gy per fraction: 72.7% DLT: 7.2%<br>12 Gy per<br>87.9%                                      |
|                                                                                                                 |
| 32.7% Median OS: 44.1 months G3 taxicity 0.9%<br>No G4/G5 AEs                                                   |
|                                                                                                                 |

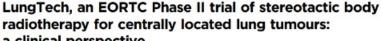


*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

# **SABR CENTRALI**



"<u>Central tumour</u>: tumour within 2 cm or touching the zone of the proximal bronchial tree or tumour that is immediately adjacent to the mediastinal or pericardial pleura, with a PTV expected to touch or include the pleura"


«<u>Ultracentral tumor</u>: tumor located within 1 cm of the proximal bronchial tree (PBT), defined as the most distal 2 cm of the trachea, the mainstem bronchi, the intermediate bronchus, and the lobar bronchi»



Gli Studi che hanno cambiato la pratica clinica: Novità 2023

#### Lungtech EORTC 22113-08113

Acceptable Unacceptable  $\alpha/\beta$ EqD2 Acceptable Unacceptable OAR D<sub>max</sub> (Gy) variation variation (Gv) variation (Gv) variation (Gv) (Gy) EqD2 (Gy) EqD2 (Gy) Trachea/main 3  $8 \times 55 = 44$  $<8 \times 5.81 = 46.68$  $\geq 8 \times 5.81 = 46.68$ 74.8 < 81.9>81.9bronchus Heart 3 Great vessels" 3 Oesophagus 3  $8 \times 5 = 40$ 64  $< 8 \times 5.44 = 43.52$ <73.6  $\geq 8 \times 5.44 = 43.52$ ≥73.6 Spinal cord<sup>b</sup> 2  $8 \times 4 = 32$ 48  $>8 \times 4 = 32$ >48 Brachial 3  $8 \times 4.75 = 38$ 58.9  $\leq 8 \times 5.17 = 41.36$ <67.7  $\geq 8 \times 5.17 = 41.36$ ≥67.7 plexus Body-PTV<sup>b</sup> 3  $8 \times 7.5 = 60$ 126  $< 8 \times 7.785 = 62.28$ <134.2  $\geq 8 \times 7.785 = 62.28$ ≥134.2 Lung-CTV 3 Chest wall<sup>d</sup> 3



a clinical perspective

Br J Radiol 2015;88:20150036.

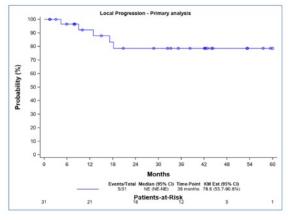
<sup>1,2</sup>S ADEBAHR, <sup>3</sup>S COLLETTE, <sup>3</sup>E SHASH, <sup>4</sup>M LAMBRECHT, <sup>5</sup>C LE PECHOUX, <sup>6</sup>C FAIVRE-FINN, <sup>7</sup>D DE RUYSSCHER, <sup>8</sup>H PEULEN, <sup>8</sup>J BELDERBOS, <sup>9</sup>R DZIADZIUSZKO, <sup>10</sup>C FINK, <sup>11</sup>M GUCKENBERGER, <sup>4</sup>C HURKMANS and <sup>1,2</sup>U NESTLE

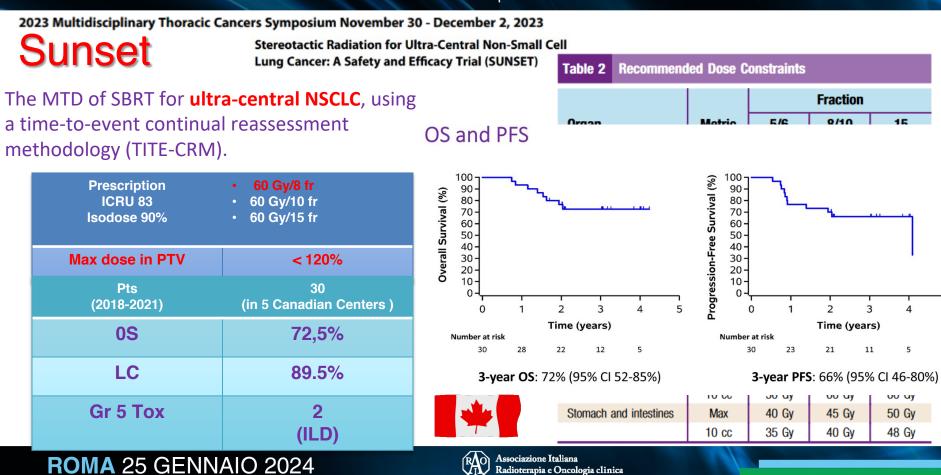
| Prescription<br>ICRU 83<br>Isodose 80% | <mark>60 Gy/8 fr</mark><br>BED <sub>10</sub> =105 Gy |
|----------------------------------------|------------------------------------------------------|
| Max dose in PTV                        | < 130%                                               |

| Pts<br>(2015-2017) | 31<br>(13 sites in 6 European<br>Country) |
|--------------------|-------------------------------------------|
| FFLP at 3 yr       | 78,6%                                     |
| Median OS          | 46 m                                      |
| Gr 5 Tox           | 2<br>(1 Lung, 1 Heart)                    |

**ROMA** 25 GENNAIO 2024







Figure 1: The probability for freedom from local progression at 36 months is 78.6% (90% CI=60.2 -

#### Associazione Italiana (RAO)

#### Radioterapia e Oncologia clinica

89.2%).

*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 



#### **Expanded Hilus**

Gli Studi che hanno cambiato la pratica clinica: Novità 2023

#### Int J Radiation Oncol Biol Phys, Vol. 117, No. 5, pp. 1222–1231, 2023 Expanded HILUS Trial: A Pooled Analysis of Risk Factors for Toxicity From Stereotactic Body Radiation Therapy of Central and Ultracentral Lung Tumors

| Prescription<br>Isodose encompassing<br>PTV | • 56 Gy/8 fr                 |
|---------------------------------------------|------------------------------|
| Max dose in PTV                             | Up to 150%                   |
| Pts<br>(2010-2018)                          | 230<br>( in 9 Nordic Center) |
| Gr 5 Tox                                    | Table 5 Multivariable        |
|                                             | Variable                     |
|                                             | Tracheobronchial tumo        |
|                                             | Mainstem bronchi + int       |
|                                             | GTV, largest diameter, 1     |

#### Table 3 Maximum dose\* in EQD<sub>2</sub> to the structures in the tracheobronchial tree

| Structure                                              |                                                           | Med         | ian, Gy | Me    | an, Gy | IQR, Gy     |         | Range, Gy      |  |  |
|--------------------------------------------------------|-----------------------------------------------------------|-------------|---------|-------|--------|-------------|---------|----------------|--|--|
| Trachea <sup>†</sup>                                   | Trachea <sup>†</sup>                                      |             |         |       |        | 8-59        |         | 0-176          |  |  |
| Mainstem bronchi <sup>†</sup>                          | Mainstem bronchi <sup>†</sup>                             |             |         |       |        | 37-107      |         | 1-211          |  |  |
| Mainstem bronchi + intermediate bro                    | onchus <sup>†</sup>                                       |             | 98      |       | 96     | 48-132      |         | 1-228          |  |  |
| Grade 5 bleeding:<br>Mainstem bronchi + intermediate b | ronchus <sup>†,</sup>                                     |             | 119     |       | 134    | 103-143     |         | 92-228         |  |  |
| Lobar bronchi <sup>§</sup>                             |                                                           | 1           | 138     |       | 129    | 79-184      |         | 1-301          |  |  |
| Lobar bronchi + intermediate bronch                    | us <sup>§</sup>                                           | ]           | 142     |       | 131    | 79-185      |         | 1-301          |  |  |
| All tracheobronchial structures <sup>§</sup>           |                                                           | 1           | 144     |       | 137    | 91-185      |         | <b>18-30</b> 1 |  |  |
|                                                        | e Cox regression of grade 5 toxicity and grade 5 bleeding |             |         |       |        |             |         |                |  |  |
|                                                        |                                                           | Grade 5 to  | oxicity |       |        | Grade 5 bl  | eeding  |                |  |  |
|                                                        | HR                                                        | 95% CI      | P value | C.    | HR     | 95% CI      | P value | C.             |  |  |
| nor compression, yes                                   | 2.995                                                     | 1.210-7.409 | .017    | 0.742 | 3.016  | 1.013-8.981 | .047    | 0.764          |  |  |
| ntermediate bronchus, $D_{0.001cc} \text{ Gy}^{-1}$ *  | 1.011                                                     | 1.005-1.019 | <.001   |       | 1.011  | 1.003-1.020 | .009    |                |  |  |
| , mm <sup>-1</sup>                                     | 1.013                                                     | 0.989-1.038 | .277    |       | 1.015  | 0.976-1.036 | .724    |                |  |  |





INTERNATIONAL JOURNAL OF **RADIATION ONCOLOGY · BIOLOGY · PHYSICS** www.redjournal.org

#### ato la pratica clinica:

**EDITORIAL** 

Limited **OAR Hotspots** 

e.g. PBT (all subsegments)

Dmax of 64 Gy in 8 fractions



Amir H. Safavi, MD, MSc,\* David A. Palma. MD. PhD.<sup>†</sup> and Meredith E. Giuliani. MBBS. PhD\*\*<sup>†</sup>

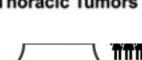
Volume 117 • Number 5 • 2023 Risk-Adapted Dose Fractionations and Prescriptions

Sunset : D max < 120%

Sunset/LungTech:

ITV-PTV: 3 -5 mm

e.g. 60 Gy in 8 fractions prescribed to 80-85% IDL with Dmax of 120%


CT simulation CE (Esophagus) Consensus atlas for OAR **Rigorous review in QA rounds** 

Check for updates



Factors to Optimize SABR for Ultra-Central Thoracic Tumors

Motion Management a **PTV Expansio** e.g. utilize 4D-CT with ITV, 3-5 isotropic PTV expansions



ation Strategies for High-Patients Gy in 5 fractions for patients with hilar and peri-carinal lymph nodes

**Contouring Accuracy** 

and Consistency

e.g. utilize IV contrast

TB inv: LN:



**ROMA** 25 GENNAIO 2024



Associazione Italiana Radioterapia e Oncologia clinica

41.7 11.1 0.6 3.8 8.3 0.5 0.0 26.9 0.4 0.0 11.1 Fx, fraction; Non-UC, nonultracentral. 0.3 Table 3. Toxicity Profile % 0.2 No. of Patients % Late toxicity No. of Patients 25.5 4.3 Grade 1 12 0. 2.1 10 21.3 Grade 2 0.0 Grade 3 4.3 0.0

**ORIGINAL ARTICLE** 

Table 2. Radiation Regimen Utilized According Location of

13

No. of Patients

%

11.5

8.3

33.3

50.0

l esion

54 Gy in 3 Fx

HILUS A HILUS B

Non-UC

50 Gy in 5 Fx

HILUS A

HILUS B

Non-UC

60 Gy in 5 Fx

HILUS A

HILUS B

Non-UC

60 Gy in 8 Fx

HILUS A

HILUS B

Non-UC

50 Gy in 10 Fx HILUS A

HILUS B

Non-UC 60 Gy in 15 Fx

HILUS A

HILUS B

Non-UC

Acute toxicity

Grade 1

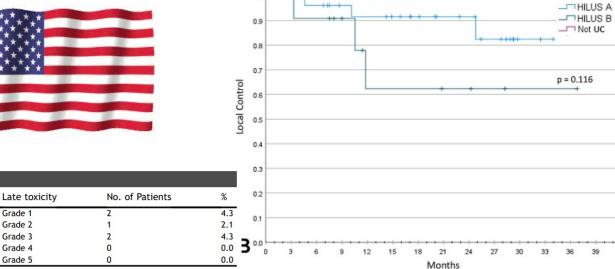
Grade 2

Grade 3

Grade 4

Grade 5

#### Magnetic Resonance-Guided Stereotactic Body Radiation Therapy/Hypofractionated Radiation therapy for Metastatic and Primary Central and Ultracentral Lung Lesions JTO Clinical and Research Reports


0.0 8.3 33.3 7.7 33.3 11.1

IASLC

Check for updates

Vol. 4 No. 5: 100488

1.0



#### **ROMA** 25 GENNAIO 2024

0.0

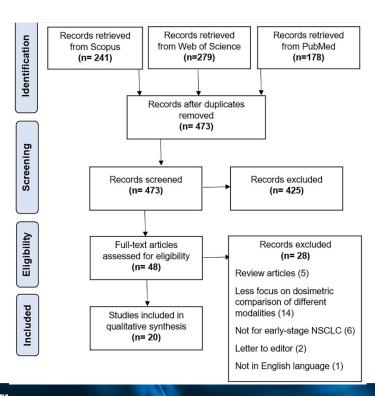


Radioterapia e Oncologia clinica

cambiato la pratica clinica:

*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

Gill et al. Radiation Oncology (2024) 19:1 https://doi.org/10.1186/s13014-023-02392-4 **Radiation Oncology** 


**Open Access** 

Check for updates

#### REVIEW

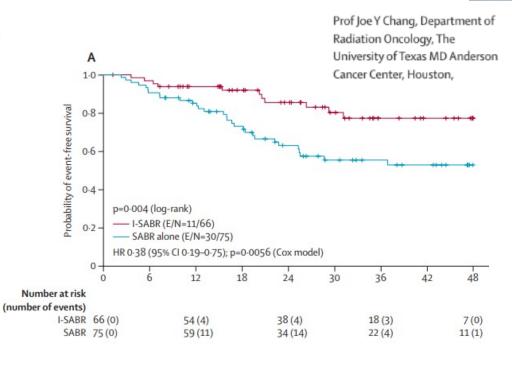
Stereotactic body radiotherapy for earlystage lung cancer: a systematic review on the choice of photon energy and linac flattened/ unflattened beams

- Target conformity and OAR sparing (Lung) : 6MV FFF
- Skin sparing and BOT reduction: **10MV FFF**





# SABR + IO


Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: an open-label, randomised, phase 2 trial



Lancet 2023; 402: 871-81

Phase II trial (2017-22) 141/156 PTS with GTV < 7 cm SABR vs SABR + 4 Niv conc Pr Endpoint : 4yr Event Free Survival

|                   | SABR | SABR + 4 Niv |
|-------------------|------|--------------|
| 4yr EFS           | 53%  | 77%          |
| LR                | 13%  | 0%           |
| RR                | 11%  | 6%           |
| DR                | 6%   | 3%           |
| Total R           | 36%  | 12%          |
| 4 yr<br>Mortality | 12%  | 6%           |



THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

#### ROMA 25 GENNAIO 2024

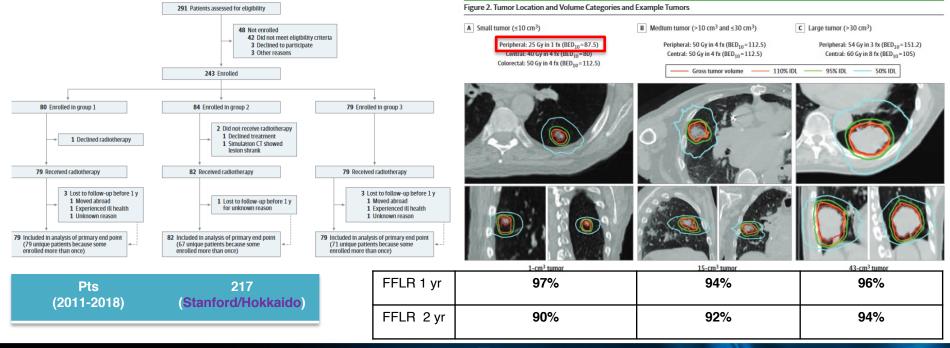


Associazione Italiana Radioterapia e Oncologia clinica

### SABR + IO

Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: an open-label, randomised, phase 2 trial

Phase II trial (2017-22) 141/156 PTS with GTV < 7 cm SABR vs SABR + 4 Niv conc Pr Endpoint : 4yr Event Free Survival


|                         | Number of participants<br>(events) | Number of participants<br>(events) | Hazard ratio                          | Hazard ratio (95% CI)<br>I–SABR vs SABR | p valu |
|-------------------------|------------------------------------|------------------------------------|---------------------------------------|-----------------------------------------|--------|
| All patients<br>Sex     | 66 (11)                            | 75 (30)                            | ·                                     | 0-38 (0-19-0-75)                        | 0.005  |
| Female                  | 46 (7)                             | 41 (9)                             | F                                     | 0.63 (0.24-1.71)                        | 0.37   |
| Male                    | 20 (4)                             | 34 (21)                            | ·                                     | 0.29 (0.10-0.85)                        | 0.024  |
| Age (years)             |                                    |                                    |                                       |                                         |        |
| _≤72                    | 40 (6)                             | 41 (17)                            | <b>→</b>                              | 0.32 (0.12-0.80)                        | 0.016  |
| >72                     | 26 (5)                             | 34 (13)                            | → <b>→</b>                            | 0.46 (0.16-1.29)                        | 0.141  |
| Smoking                 | (9)                                | 51(-5)                             |                                       | (                                       |        |
| Current or former       | 59 (11)                            | 68 (30)                            | ·•                                    | 0.38 (0.19-0.75)                        | 0.005  |
| Never*                  | 7(0)                               | 7 (0)                              |                                       |                                         |        |
| Lung cancer history     |                                    |                                    |                                       |                                         |        |
| No                      | 50 (7)                             | 63 (24)                            | ▶ <b>──</b>                           | 0.32 (0.14-0.74)                        | 0.007  |
| Yes                     | 16 (4)                             | 12 (6)                             | · · · · · · · · · · · · · · · · · · · | 0.52 (0.15-1.85)                        | 0.31   |
| ECOG score              |                                    |                                    |                                       |                                         |        |
| 0-1                     | 62 (11)                            | 68 (27)                            | ·∎                                    | 0.39 (0.19-0.79)                        | 0.009  |
| 2†                      | 4 (0)                              | 7 (3)                              |                                       |                                         |        |
| Histology               |                                    |                                    |                                       |                                         |        |
| Non-squamous            | 55 (11)                            | 61 (22)                            | ·                                     | 0.48 (0.23-0.99)                        | 0.046  |
| Squamous†               | 11 (0)                             | 14 (8)                             |                                       |                                         |        |
| Tumour size             |                                    |                                    |                                       |                                         |        |
| 0 to ≤2 cm              | 35 (6)                             | 51 (21)                            | ⊢ <b></b> (                           | 0.35 (0.14-0.86)                        | 0.023  |
| >2 to 5 cm              | 31 (5)                             | 24 (9)                             | ► <b></b>                             | 0.40 (0.14-1.20)                        | 0.10   |
| SABR regimen            |                                    |                                    |                                       |                                         |        |
| 50 Gy in four fractions | 59 (10)                            | 63 (24)                            |                                       | 0.42 (0.20-0.88)                        | 0.022  |
| 70 Gy in ten fractions  | 7 (1)                              | 12 (6)                             |                                       | 0.18 (0.02-1.52)                        | 0.12   |
| PD-L1 status            |                                    |                                    |                                       |                                         |        |
| <1%                     | 27 (4)                             | 34 (16)                            |                                       | 0.27 (0.09-0.81)                        | 0.019  |
| ≥1%†                    | 15 (0)                             | 16 (5)                             |                                       |                                         |        |
| Unknown                 | 24 (7)                             | 25 (9)                             |                                       | 0.84 (0.31-2.27)                        | 0.74   |
| EGFR status             |                                    |                                    |                                       |                                         |        |
| Wild type               | 25 (2)                             | 22 (10)                            |                                       | 0.17 (0.04-0.80)                        | 0.02   |
| Mutated†                | 1(0)                               | 3 (1)                              |                                       |                                         |        |
| Unknown                 | 40 (9)                             | 50 (19)                            | ► <b>-</b>                            | 0.51 (0.23-1.14)                        | 0.10   |
|                         |                                    |                                    | 0.20 0.50 1.00 2.00 5.00              |                                         |        |
|                         |                                    |                                    | Favours I-SABR Favours SABR           |                                         |        |
|                         |                                    |                                    | ravoors - Shok - ravoors Shok         |                                         |        |



Gli Studi che hanno cambiato la pratica clinica: Novità 2023

JAMA Oncology | Original Investigation JAMA Oncology November 2023 Volume 9, Number 11

# Individualized Stereotactic Ablative Radiotherapy25 Gy/1 fr = EQD2 87.5 GyThe iSABR Phase 2 Nonrandomized Controlled TrialNot for colon mets



ROMA 25 GENNAIO 2024

Associazione Italiana Radioterapia e Oncologia clinica

Gli Studi che hanno cambiato la pratica clinica: Novità 2023

# LA - NSCLC

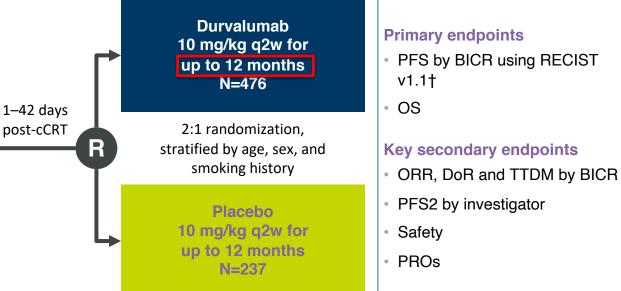
ROMA 25 GENNAIO 2024



Associazione Italiana Radioterapia e Oncologia clinica

Gli Studi che hanno cambiato la pratica clinica: Novità 2023

#### PACIFIC Trial


- LA NSCLC
- Unresectable, Stage III NSCLC without progression after definitive platinum-based cCRT (≥2 cycles)

• 18 years or older

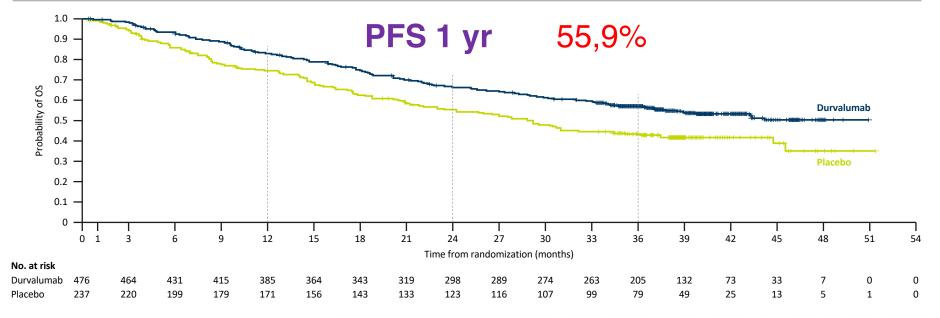
- WHO PS score 0 or 1
- If available, archived pre-cCRT tumor tissue for PD-L1 testing\*

All-comers population (i.e. irrespective of PD-L1 status)

#### N=713 randomized



BICR, blinded independent central review; cCRT, concurrent chemoradiotherapy; DoR, duration of response; NSCLC, non-small-cell lung cancer; ORR, objective response rate; OS, overall survival; PD-L1, programmed death ligand 1; PFS, progression-free survival; PFS2, time to second objective disease progression; PRO, patient-reported outcome; q2w, once every 2 weeks; R, randomization; RECIST, Response Evaluation Criteria in Solid Tumors; TTDM, time to death or distant metastasis; WHO PS, World Health Organization performance status


\*Using the Ventana SP263 immunohistochemistry assay.



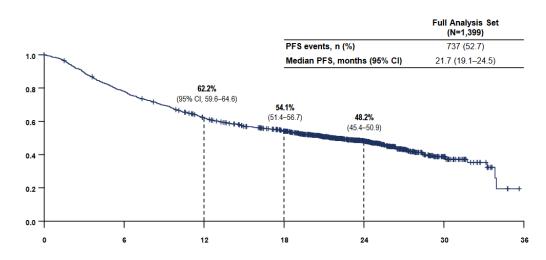
#### HIGHLIGHTS in RADIOTERAPIA Updated OS in the ITT population

Gli Studi che hanno cambiato la pratica clinica: Novità 2023

|                                                                                                                                                                   | No. of events/<br>total no. of patients (%) | Median OS<br>(95% Cl) months | 12-month OS rate (95% CI)<br>% | 24-month OS rate (95% CI)<br>% | 36-month OS rate (95% Cl)<br>% |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|--|--|--|--|
| Durvalumab                                                                                                                                                        | 210/476 (44.1)                              | NR (38.4–NR)                 | 83.1 (79.4–86.2)               | 66.3 (61.8–70.4)               | 57.0 (52.3–61.4)               |  |  |  |  |
| Placebo                                                                                                                                                           | 134/237 (56.5)                              | 29.1 (22.1–35.1)             | 74.6 (68.5–79.7)               | 55.3 (48.6–61.4)               | 43.5 (37.0–49.9)               |  |  |  |  |
| Stratified hazard ratio for death, 0.69 (95% CI, 0.55–0.86)<br>Stratified hazard ratio for death from the primary analysis, <sup>9</sup> 0.68 (95% CI, 0.53–0.87) |                                             |                              |                                |                                |                                |  |  |  |  |






Gli Studi che hanno cambiato la pratica clinica: Novità 2023

Treatment Characteristics and Real-World **Progression-Free Survival in Patients With** Unresectable Stage III NSCLC Who Received Durvalumab After Chemoradiotherapy: Findings From the PACIFIC-R Study Journal of Thoracic Oncology Vol. 18 No. 2: 181-193



- Durva 11 m
- Median rwPFS 21.7 m
- obability Better: PD-L1 + and CCRT
- 17% Interruption x Tox ullet(10 % Lung)





Time from index date (months)

#### **ROMA** 25 GENNAIO 2024



of PFS


Gli Studi che hanno cambiato la pratica clinica: Novità 2023

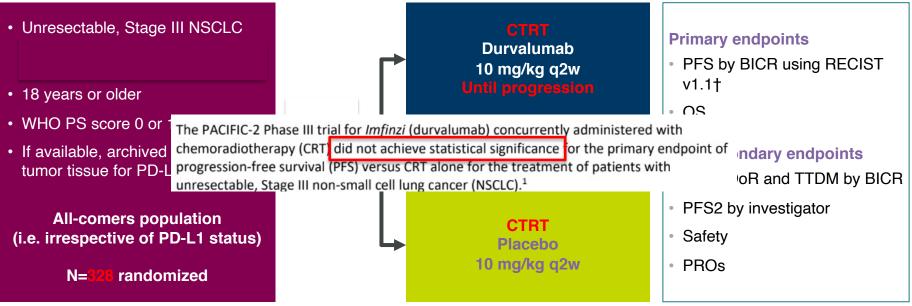
#### PACIFIC Trial

- Unresectable, Stage III NSCLC without progression after definitive platinum-based cCRT (≥2 cycles)
- 18 years or older
- WHO PS score 0 or 1
- If available, archived pre-cCRT tumor tissue for PD-L1 testing\*

All-comers population (i.e. irrespective of PD-L1 status)

#### N=713 randomized




BICR, blinded independent central review; cCRT, concurrent chemoradiotherapy; DoR, duration of response; NSCLC, non-small-cell lung cancer; ORR, objective response rate; OS, overall survival; PD-L1, programmed death ligand 1; PFS, progression-free survival; PFS2, time to second objective disease progression; PRO, patient-reported outcome; q2w, once every 2 weeks; R, randomization; RECIST, Response Evaluation Criteria in Solid Tumors; TTDM, time to death or distant metastasis; WHO PS, World Health Organization performance status

\*Using the Ventana SP263 immunohistochemistry assay.



Gli Studi che hanno cambiato la pratica clinica: Novità 2023

#### PACIFIC 2 Trial



BICR, blinded independent central review; cCRT, concurrent chemoradiotherapy; DoR, duration of response; NSCLC, non-small-cell lung cancer; ORR, objective response rate; OS, overall survival; PD-L1, programmed death ligand 1; PFS, progression-free survival; PFS2, time to second objective disease progression; PRO, patient-reported outcome; q2w, once every 2 weeks; R, randomization; RECIST, Response Evaluation Criteria in Solid Tumors; TTDM, time to death or distant metastasis; WHO PS, World Health Organization performance status

\*Using the Ventana SP263 immunohistochemistry assay.



*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

# **PACIFIC ON GOING**

| PACIFIC-5 | Phase III trial is a randomised, double-blind, placebocontrolled, multi-centre, international study assessing the efficacy and safety of durvalumab compared with placebo, as consolidation therapy in patients with unresectable Stage III NSCLC, who have not progressed following chemoradiotherapy (CRT). This is an ex-US study with a focus on patients in China |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PACIFIC-8 | Phase III trial is a randomised, double-blind, placebocontrolled, multi-centre, international study assessing the efficacy and safety of durvalumab and domvanalimab versus durvalumab and placebo in patients with locally advanced, unresectable NSCLC whose disease has not progressed following CRT                                                                |
| PACIFIC-9 | Phase III trial is a randomised, double-blind, placebocontrolled, multi-centre, international study assessing the efficacy and safety of durvalumab with oleclumab or durvalumab and monalizumab in patients with locally advanced, unresectable NSCLC whose disease has not progressed following CRT                                                                  |





Gli Studi che hanno cambiato la pratica clinica: Novità 2023

# LA-NSCLC

- RT + IO without CT
  - No CT:
    - Poor PS, Comorbities, Age...
    - 20% Interruption
    - CT Immunodepressive
    - Difficulties for concomitant treatments



Gli Studi che hanno cambiato la pratica clinica: Novità 2023

# LA-NSCLC

- RT + IO without CT: Phase II Trials
- SPIRAL-RT
- DOLPHIN
- DUART
- PFS 1 yr PFS 1 yr
  - PFS 1 yr

# PACIFIC CCRT





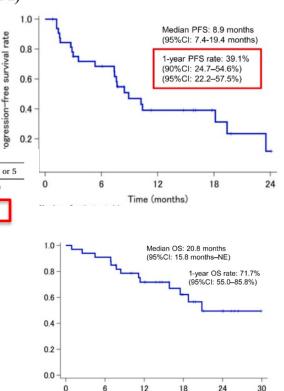
#### **ROMA** 25 GENNAIO 2024



Associazione Italiana Radioterapia e Oncologia clinica

Gli Studi che hanno cambiato la pratica clinica: Novità 2023

### **SPIRAL RT**


**Original Research** 

A phase 2 trial of durvalumab treatment following radiation monotherapy in patients with non-small cell lung cancer ineligible for stage III chemoradiotherapy: The SPIRAL-RT study European Journal of Cancer 195 (2023) 113373

Tadaaki Yamada<sup>a</sup>, Yasuhiro Goto<sup>b</sup>, Hiroshi Tanaka<sup>c</sup>, Hideharu Kimura<sup>d</sup>, Koichi Minato<sup>e</sup>,

| Pts<br>(2019-2021) | 33<br>(8 Japanese Institute) |
|--------------------|------------------------------|
| Median Age         | 79                           |
| Median OS          | 20,9 m                       |
| Gr 5 Tox           | 1<br>(1 Lung Infection)      |

| Event                                 | Any grade <sup>a</sup>  | Grade 3, 4, or         |  |
|---------------------------------------|-------------------------|------------------------|--|
| Any event                             | 29 (87.9%)              | 13 (39.4%)             |  |
| Radiation pneumonitis                 | 17 <sup>b</sup> (51 5%) | 0                      |  |
| Lung infection                        | 7 (21.2%)               | 4 <sup>c</sup> (12.1%) |  |
| Decreased appetite                    | 5 (15 2%)               | 1 (3 1%)               |  |
| Pharyngitis                           | 5 (15.2%)               | 0                      |  |
| Hypothyroidism                        | 5 (15.2%)               | 0                      |  |
| Diarrhoea                             | 5 (15.2%)               | 0                      |  |
| Constipation                          | 3 (9.1%)                | 0                      |  |
| Neuralgia                             | 3 (9.1%)                | 0                      |  |
| Infusion site extravasation           | 3 (9.1%)                | 0                      |  |
| Platelet count decreased              | 3 (9.1%)                | 1 (3.1%)               |  |
| Fatigue                               | 2 (6.1%)                | 0                      |  |
| Thrush                                | 2 (6.1%)                | 0                      |  |
| Periodontal disease                   | 2 (6.1%)                | 0                      |  |
| Hepatobiliary disorders               | 2 (6.1%)                | 1 (3.1%)               |  |
| Pneumothorax                          | 2 (6.1%)                | 1 (3.1%)               |  |
| Chronic obstructive pulmonary disease | 2 (6.1%)                | 1 (3.1%)               |  |
| Erythema multiforme                   | 2 (6.1%)                | 0                      |  |
| Eczema                                | 2 (6.1%)                | 0                      |  |
| Rash maculopapular                    | 2 (6.1%)                | 0                      |  |
| Hyperglycaemia                        | 2 (6.1%)                | 0                      |  |



Time (months)

11

0

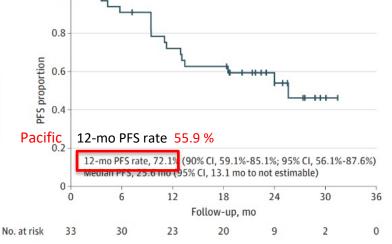
Number of patients at risk

33



*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

### DOLPHIN


JAMA Oncology | Original Investigation

Durvalumab Plus Concurrent Radiotherapy for Treatment of Locally Advanced Non-Small Cell Lung Cancer The DOLPHIN Phase 2 Nonrandomized Controlled Trial

JAMA Oncol. 2023;9(11):1505-1513. doi:10.1001/jamaoncol.2023.3309

| Pts<br>(2019-2022) | 35<br>(12 Japanese Institute) |
|--------------------|-------------------------------|
| ECOG 1/2           | 19/16                         |
| Gr 5 Tox           | 2<br>(1 BE fistula)           |





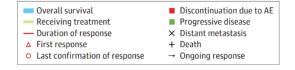
- Older patients
- Local relapses (low volume GTV)

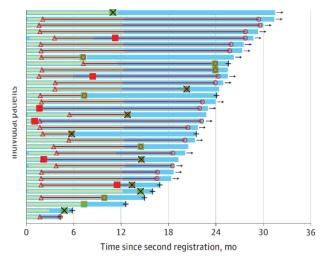
#### ROMA 25 GENNAIO 2024



1.0

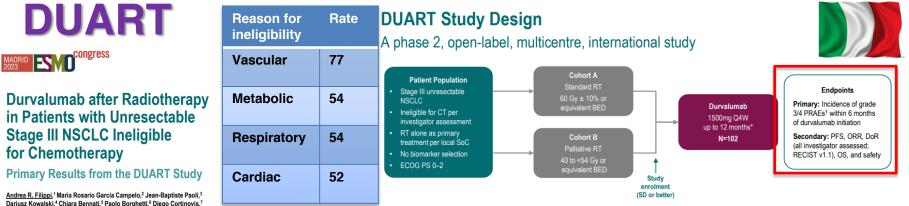
*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 


### DOLPHIN


JAMA Oncology | Original Investigation

Durvalumab Plus Concurrent Radiotherapy for Treatment of Locally Advanced Non-Small Cell Lung Cancer The DOLPHIN Phase 2 Nonrandomized Controlled Trial

JAMA Oncol. 2023;9(11):1505-1513. doi:10.1001/jamaoncol.2023.3309


| AE                                               | Participants,<br>No. (%) |
|--------------------------------------------------|--------------------------|
| Any grade AEs                                    | 34 (100)                 |
| Grade 3 or 4                                     | 18 (52.9)                |
| Grade 5                                          | 2 (5.9)                  |
| Leading to discontinuation of protocol treatment | 6 (17.6)                 |
| Leading to discontinuation of durvalumab         | 7 (20.6)                 |
| Leading to discontinuation of radiotherapy       | 1 (2.9)                  |
| Any grade study drug-related AE                  | 31 (91.2)                |
| Grade 3 or 4                                     | 10 (29.4)                |
| Grade 5                                          | 1 (2.9)                  |
| AEs of special interest                          | 25 (73.5)                |
| Grade 3 or 4                                     | 6 (17.6)                 |
| Grade 5                                          | 0                        |
| Corticosteroid required                          | 7 (20.6)                 |
| Pneumonitis or radiation pneumonitis             | 23 (67.6)                |
| Grade 3 or 4                                     | 4 (11.8)                 |
| Grade 5                                          | 0                        |
| Leading to discontinuation of durvalumab         | 3 (8.8)                  |
| Leading to discontinuation of radiotherapy       | 1 (2.9)                  |
|                                                  |                          |







Gli Studi che hanno cambiato la pratica clinica: Novità 2023



<u>Andrea R. Filippi</u>, <sup>1</sup> Maria Rosario Garcia Campelo,<sup>2</sup> Jean-Baptiste Paoli, <sup>3</sup> Dariusz Kowalski, <sup>4</sup> Chirat Bennati, <sup>3</sup> Paolo Borghetti, <sup>6</sup> Diego Cortinovis,<sup>7</sup> Angelo Delmonte,<sup>8</sup> Carlo Genova,<sup>9</sup> Sylvie Van Hulst,<sup>10</sup> Robert Mroz,<sup>11</sup> Sergiusz Nawrocki, <sup>12</sup> Ivan Toledano,<sup>10</sup> Giuseppe Tonini, <sup>14</sup> Ignacio Diaz Perez,<sup>15</sup> Nefeli Georgoulai,<sup>18</sup> Kayhan Foroutanpouri,<sup>19</sup> Rafal Dizadziuszko<sup>16</sup>

| Characteristic       |                       | Cohort A<br>(standard RT; n=59) | Cohort B<br>(palliative RT; n=43) | Total<br>(N=102) |
|----------------------|-----------------------|---------------------------------|-----------------------------------|------------------|
| Age                  | Median (range), years | 78.0 (43–87)                    | 80.0 (56–87)                      | 79.0 (43–87)     |
|                      | ≥75 years, %          | 59.3                            | 72.1                              | 64.7             |
| Sex, %               | Male                  | 69.5                            | 74.4                              | 71.6             |
|                      | Female                | 30.5                            | 25.6                              | 28.4             |
| Race, %*             | White                 | 94.5                            | 95.0                              | 94.7             |
|                      | Other                 | 1.8                             | 0                                 | 1.1              |
|                      | Unknown               | 3.6                             | 5.0                               | 4.2              |
| ECOG PS, %*          | 0                     | 27.6                            | 7.0                               | 18.8             |
|                      | 1                     | 70.7                            | 76.7                              | 73.3             |
|                      | 2                     | 1.7                             | 16.3                              | 7.9              |
| Disease stage, %†    | IIIA                  | 61.0                            | 60.5                              | 60.8             |
|                      | IIIB                  | 33.9                            | 30.2                              | 32.4             |
|                      | IIIC                  | 5.1                             | 7.0                               | 5.9              |
| PD-L1 expression, %* | TC <1%                | 44.2                            | 45.2                              | 44.6             |
|                      | TC ≥1%                | 53.5                            | 48.4                              | 51.4             |
| Smoking status, %    | Current               | 23.7                            | 16.3                              | 20.6             |
|                      | Former                | 64.4                            | 72.1                              | 67.6             |
|                      | Never                 | 11.9                            | 11.6                              | 11.8             |

|                               | All-cause AEs                   |                                   |                  |                                 | PRAEs*                                  |                                     |
|-------------------------------|---------------------------------|-----------------------------------|------------------|---------------------------------|-----------------------------------------|-------------------------------------|
| ·                             | Cohort A<br>(standard RT; n=59) | Cohort B<br>(palliative RT; n=43) | Total<br>(N=102) | Cohort A<br>(standard RT; n=59) | Cohort B<br>(palliative RT; n=43)       | Total<br>(N=102)                    |
| Any AE, n (%)                 | 56 (94.9)                       | 43 (100)                          | 99 (97.1)        | 40 (67.8)                       | 21 (48.8)                               | 61 (59.8)                           |
| Grade 3/4<br>Within 6 months  | 25 (42.4)                       | 15 (34.9)<br>—                    | 40 (39.2)        | 9 (15.3)<br>7 (11.9)            | 3 (7.0)<br>3 (7.0)                      | 12 (11.8)<br>10 (9.8)               |
| SAE                           | 25 (42.4)                       | 13 (30.2)                         | 38 (37.3)        | 7 (11.9)                        | 2 (4.7)                                 | 9 (8.8)                             |
| Outcome of death <sup>‡</sup> | 5 (8.5)                         | 2 (4.7)                           | 7 (6.9)          | 1 (1.7)                         | 0                                       | 1 (1.0)                             |
| Leading to Tx discontinuation | 11 (18.6)                       | 7 (16.3)                          | 18 (17.6)        | 7 (11.9)                        | 3 (7.0)                                 | 10 (9.8)                            |
| Leading to Tx<br>interruption | 31 (52.5)                       | 17 (39.5)                         | 48 (47.1)        | 8 (13.6)                        | 5 (11.6)                                | 13 (12.7)                           |
| AESI                          | 26 (44.1)                       | 15 (34.9)                         | 41 (40.2)        | 21 (35.6)                       | 9 (20.9)                                | 30 (29.4)                           |
| imAE                          | 23 (39.0)                       | 13 (30.2)                         | 36 (35.3)        | 22 (37.3)                       | 12 (27.9)                               | 34 (33.3)                           |
| Congre                        | 22                              |                                   |                  |                                 | PRAF is allocative composition for a lo | and here is here 3A helelos loomles |



AE, adverse event; AESI, adverse event of special interest; CI, confidence interval; imAE, immune-mediated adverse event; PRAE, adverse event possibly related to treatment; SAE, serious adverse event; Tx, treatment \*PRAE is alternative nomenclature for a treatment-related AE and is used here to align with the case report form used to collect investigators' responses. "Cl calculated using the Clopper-Pearson method. "PRAE with outcome of death was pneumonits (n=1) in Chohrt A.



*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

# DUART



#### Durvalumab after Radiotherapy in Patients with Unresectable Stage III NSCLC Ineligible for Chemotherapy

#### Primary Results from the DUART Study

Andrea R. Filippi,<sup>1</sup> Maria Rosario García Campelo,<sup>2</sup> Jean-Baptiste Paoli,<sup>3</sup> Dariusz Kowalski,<sup>4</sup> Chiara Bennati,<sup>5</sup> Paolo Borghetti,<sup>6</sup> Diego Cortinovis,<sup>7</sup> Angelo Delmonte,<sup>8</sup> Carlo Genova,<sup>3</sup> Sylvie Van Hulst,<sup>10</sup> Robert Mroz,<sup>11</sup> Sergiusz Nawrocki,<sup>12</sup> Ivan Toledano,<sup>13</sup> Giuseppe Tonini,<sup>14</sup> Ignacio Diaz Pere: Nefeli Georgoulia,<sup>15</sup> Kayhan Foroutanpour,<sup>15</sup> Rafal Dziadziuszko<sup>16</sup>

#### PFS OS Cohort A Cohort B Cohort A Cohort B (palliative RT) (standard RT) Total (standard RT) (palliative RT) Total 35/102 (34.3) No, events / no, patients (%) 26/59 (44.1) 25/43 (58.1) 51/102 (50.0) No. events / no. patients (%) 16/59 (27.1) 19/43 (44.2) - DEC (059/ CI) 70/00 440 00/70 07 Median OS (95% CI)\*, months NC (14.5-NC) 14.8 (10.1-NC) 15.9 (11.5-NC) 40.2 (23.6-56.3) 34.8 (23.0-46.9) 12-month OS rate (95% CI)<sup>†</sup>, % 67.0 (50.1-79.2) 56.3 (37.3-71.6) 62.2 (49.8-72.4) 12-month PFS rate (95% CI)<sup>†</sup>, % 29.3 (13.8-46.7) 1.0 1.0 0.9 0.9 0.8 0.8 Probability of PFS Probability of OS 0.7 0.7 0.6 0.6 0.5 0.5 34.8% 0.4 0.4 0.3 -0.3 0.2 0.2 0.1 0.1 0.0 0.0 27 12 15 18 21 24 12 15 18 21 24 27 0 Time from start of treatment, months Time from start of treatment, months No. at risk: No. at risk: Total Total 102 27 15 0

Median follow-up (range) for patients censored for PFS: 7.4 months (0.0-24.9)

Median follow-up (range) for patients censored for OS: 9.9 months (0.9-26.0)





Gli Studi che hanno cambiato la pratica clinica: Novità 2023

Frontiers | Frontiers in Immunology

TYPE Systematic Review PUBLISHED 13 March 2023 poi 10.3389/fimmu.2023.1065510

Safety and efficacy of radiotherapy/chemoradiotherapy combined with immune checkpoint inhibitors for non-small cell lung cancer: A systematic review and meta-analysis

 $\geq$  Cardiotox < 5% Gr 3 Lungtox 5,82% — SBRT better than CT-RT TABLE 2 Non-small cell lung cancer patient survival following treatment with ICIs and RT

|            | Stage II-III NSCLC                                       | Stage IV NSCLC |
|------------|----------------------------------------------------------|----------------|
| 1-year PFS | 56.39%<br>(95% CI: 50.66%-62.03%, I <sup>2</sup> :39.4%) | -              |
| 2-year PFS | 43.58%-45%                                               | _              |
| 3-year PFS | 39.7%                                                    | _              |
| 4-year PFS | 35.0%                                                    | _              |
| 5-year PFS | 33.1%                                                    | _              |
| 1-year OS  | 83.25%<br>(95% CI: 79.42%-86.75%, I <sup>2</sup> :17.6%) | 50%            |
| 2-year OS  | 66.16%<br>(95% CI: 62.30%-69.92%, I <sup>2</sup> :0.0%)  | 25%            |
| 3-year OS  | 56.7%                                                    | _              |
| 4-year OS  | 49.7%                                                    | -              |
| 5-year OS  | 42.9%                                                    | _              |

| Subgroup              | Proportion | 95%CI            | I-squared |   |      |      |   |      |  |
|-----------------------|------------|------------------|-----------|---|------|------|---|------|--|
| PD-1                  | 0.0545     | [0.0287; 0.0803] | 1.40%     | 1 |      |      | • |      |  |
| PD-L1                 | 0.0507     | [0.0284; 0.0788] | 49.40%    |   |      | _    | - | _    |  |
| Prospective studies   | 0.0457     | [0.0306; 0.0609] | 0.00%     |   |      | -    | - |      |  |
| Retrospective studies | 0.0537     | [0.0273; 0.0883] | 55.60%    |   |      | _    | • |      |  |
| Overall               | 0.0510     | [0.0340; 0.0713] | 46.00%    |   |      |      |   | -    |  |
|                       |            |                  |           | - | 0.02 | 0.04 | 1 | 0.00 |  |



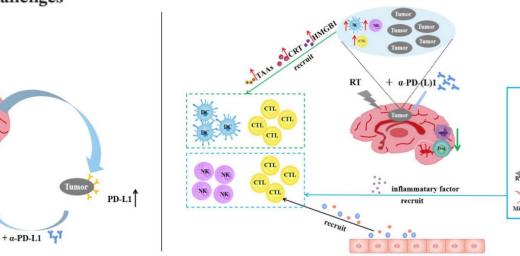
Gli Studi che hanno cambiato la pratica clinica: Novità 2023

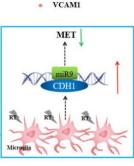
Received: 4 March 2022 Revised: 10 June 2022 Accepted: 29 June 2022

+ α-PD-1

CTL

DOI: 10.1002/cam4.5016


REVIEW


Cancer Medicine WILEY

Radiotherapy combined with PD-1/PD-L1 inhibitors in NSCLC brain metastases treatment: The mechanisms, advances, opportunities, and challenges

single brain radiotherapy

# Brain SRS + IO





up-regulation

ICAM1 0

down-regulation

**BBB:** blood brain barrier



Gli Studi che hanno cambiato la pratica clinica: Novità 2023

Received: 4 March 2022 Revised: 10 June 2022 Accepted: 29 June 2022

DOI: 10.1002/cam4.5016

REVIEW

Cancer Medicine WILEY

#### Radiotherapy combined with PD-1/PD-L1 inhibitors in NSCLC brain metastases treatment: The mechanisms, advances, opportunities, and challenges

# **Brain SRS + IO**

TABLE 1 Advances in synergistic effects of radiotherapy and PD-1/PD-L1 inhibitors for NSCLC BMs treatment

| Author (year)                         | Number of<br>cases | Means of<br>intervention                                                                        | Radiotherapy plan                                       | Immunotherapy plan                                                    | Outcome                                                                                                                        |
|---------------------------------------|--------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Patruni et al (2019) <sup>25</sup>    | 13,998             | RT + IO (545) vs. RT<br>(13,545)                                                                | 1                                                       | 1                                                                     | Median OS:13.1 vs. 9.7 months<br>3-year OS: 17% vs. 12%                                                                        |
| Shaverdian et al (2017) <sup>26</sup> | 97                 | Extracranial RT+IO<br>(38) vs. IO (59)                                                          | /                                                       | Pembrolizumab (2 mg/kg or 10 mg/kg, q3w,<br>iv; or 10 mg/kg, q2w, po) | Median PFS: 6.3 months vs. 2.0 months;<br>6-month PFS: 54% vs. 21%                                                             |
| Ahmed et al (2017) <sup>27</sup>      | 17                 | RT + IO                                                                                         | SRS or FSRT,<br>18–24 Gy/F or<br>25 Gy/5F               | Nivolumab or Durvalumab                                               | OS KM rates (6/12 months): 48%/81% (from<br>the date of SRS); 81%/51% (from the<br>date of cranial metastases diagnosis)       |
| Chen et al (2018) <sup>28</sup>       | 260 (157 NSCLC)    | SRS/SRT (181) vs.<br>non-concurrent<br>SRS/SRT + IO (51)<br>vs. concurrent<br>SRS/SRT + IO (28) | SRS/SRT, 15–<br>24 Gy/1F,<br>18–24 Gy/3F or<br>25 Gy/5F | Ipilimumab, Nivolumab, or Pembrolizumab                               | Median OS: 12.9 months (SRS/SRT) vs.<br>14.5 months (non-concurrent SRS/<br>SRT+10) vs. 24.7 months (concurrent<br>SRS/SRT+10) |
| Pike et al (2017) <sup>29</sup>       | 85 (39 NSCLC)      | SRS/WBRT+IO                                                                                     | WBRT (12-39 Gy)/<br>SRS (15-30 Gy)                      | Pembrolizumab, Nivolumab or both (3 mg/<br>kg)                        | Median OS: 192 days                                                                                                            |

TABLE 2 The optimal timing for radiotherapy combined with ICIs

| Author (year)                            | Number of<br>cases | Intervention time                                                                                                                                                               | Radiotherapy plan                                | Immunotherapy plan                                                                                                                     | Outcome                                                                                                                      |
|------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Li et al (2020) <sup>30</sup>            | 13                 | Concurrent RT+IO (SRS<br>within 7 days of IO)                                                                                                                                   | SRS                                              | (Nivolumab, 3 mg/kg,<br>q2w + Ipilimumab, 1 mg/kg,<br>q6w) × 4 cycles + Nivolumab,<br>450 mg, q4w.                                     | Intracranial mPFS: 9.7 months; 4-month<br>PFS rate: 75%<br>Extracranial ORR: 33%                                             |
| Porte et al (2021) <sup>31</sup>         | 51                 | "SRT before IO" vs.<br>"concurrent SRT+IO"<br>(IO within 1 month of<br>SRT) vs. "SRT after IO"                                                                                  | SRT (15–21 Gy/F, 56.0% or<br>18–27 Gy/3F, 41.8%) | Nivolumab (47.1%),<br>Pembrolizumab (33.3%),<br>Durvalumab (15.7%), or<br>Atezolizumab (3.9%) (for a<br>median duration of 4.9 months) | 1 year R-PFI: 24.1% vs. 49.6% vs. 34.2%;<br>1 year OS: 67.5% vs. 70.2% vs. 69.2%;<br>1-year L-PFI: 70.1% vs. 78.9% vs. 77.8% |
| Srivastava<br>et al (2017) <sup>34</sup> | 50 (24 NSCLC)      | RT + adjuvant IO (applying<br>PD-1 inhibitors more<br>than 3 weeks after SRS)<br>(23) vs. Concurrent<br>RT + IO (applying PD-1<br>inhibitors at or <3 weeks<br>before SRS) (27) | SRS                                              | Nivolumab/Pembrolizumab                                                                                                                | 6-month LC (76% vs. 100%)<br>6-month DBC (41% vs. 71%)                                                                       |
| Imber et al (2017) <sup>36</sup>         | 45                 | Sequential IO + brain RT<br>(RT >2 months after last<br>IO) (36%) vs. Concurrent<br>brain RT + IO (64%)                                                                         | SRS (2100 cGy)/hRT<br>(3000 cGy/5F)              | Anti PD-(L)1                                                                                                                           | Median DBF:4.9 months vs. 3.9 months                                                                                         |

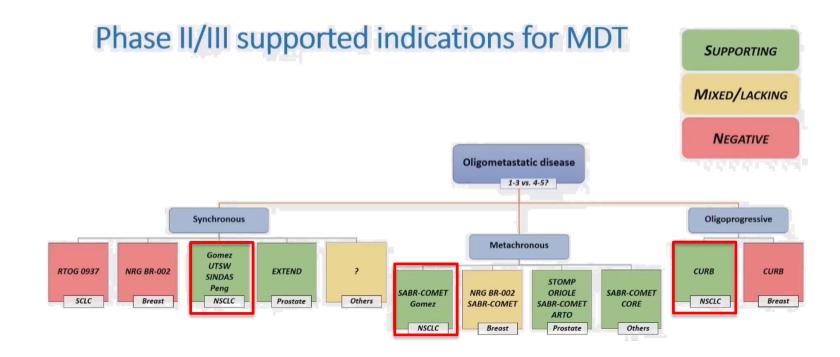


*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

# **Oligomets + RT**

#### Two Possible Ways to Define "Oligometastatic"

- 1. Cancers are oligometastatic when there is a chance of cure
  - We don't have a clear definition of cure for many cancers
  - Likely a decreasing probability of cure with increasing number of mets


2. Cancers are oligometastatic when **patients benefit from ablative** treatment

 Might be no upper limit – patients might benefit with 15 lesions, and that is clearly not 'oligo'



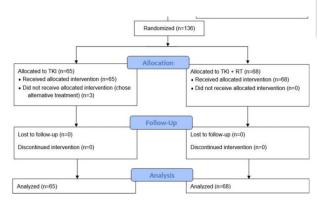
Gli Studi che hanno cambiato la pratica clinica: Novità 2023

# **Oligomets + RT**

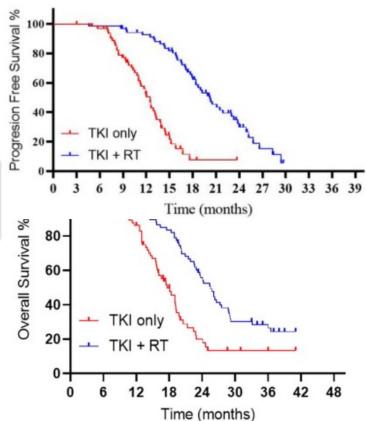




Gli Studi che hanno cambiato la pratica clinica: Novità 2023


# **Oligomets + RT**




JNCI: Journal of the National Cancer Institute, 2023, 115(6), 742-748 https://doi.org/10.1093/jnci/djac015 Advance Access Publication Date: 30 January 2022 Article

#### Randomized Trial of First-Line Tyrosine Kinase Inhibitor With or Without Radiotherapy for Synchronous **Oligometastatic EGFR-Mutated Non-Small Cell Lung** Cancer

Xiao-Shan Wang, MD,<sup>1,†</sup> Yi-Feng Bai, MD,<sup>1,†</sup> Vivek Verma, MD,<sup>2</sup> Rui-Lian Yu, MD,<sup>1</sup> Wei Tian, MS,<sup>1</sup> Rui Ao, MD,<sup>1</sup> Ying Deng, MD,<sup>1</sup>



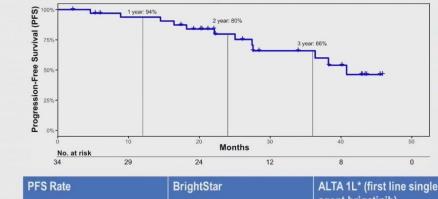
|       | ТКІ  | SABR + TKI |  |
|-------|------|------------|--|
| PFS m | 12,5 | 20,2       |  |
| OS m  | 17,4 | 25,5       |  |





*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

# **Oligomets + RT**


#### OA22.04

BRIGHTSTAR Local Consolidative Therapy with Brigatinib in Tyrosine Kinase Inhibitor-Naïve ALK-Rearranged Metastatic NSCLC

Y. Elamin,<sup>1</sup> S. Gandhi,<sup>2</sup> M. Saad,<sup>2</sup> S. Rehmani,<sup>2</sup> M.B. Antonoff,<sup>2</sup>

Journal of Thoracic Oncology Vol. 18 No. 115

## **BRIGHTSTAR – Progression Free Survival**



| PFS Rate | BrightStar | ALTA 1L* (first line single<br>agent brigatinib) |
|----------|------------|--------------------------------------------------|
| 1-yr     | 94%        | 80%                                              |
| 2-yr     | 76%        | 56%                                              |
| 3-yr     | 66%        | 47%                                              |

Elamin et al. WCLC 2023



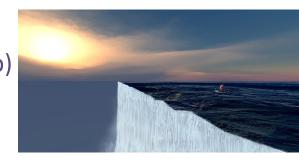
Gli Studi che hanno cambiato la pratica clinica: Novità 2023

# Oligomets + RT

THORACIC ONCOLOGY

IASLC

Local Treatments of Oligometastatic and Oligoprogressive NSCLC Should Not Become the Standard of Care




Fergus Macbeth, DM,<sup>a</sup> Tom Treasure, MD<sup>b,\*</sup>

- Ashworth : Metanalysis of 45 studies: «no control data»
- No III ph Trials (Ivengar/Gomez early closed) Not correct PFS as surrogate OS : not reported or late reported (95% CI overlap)
- Lim: III phase Trial (up to 4 brain mets) : No diff in OS
- 2 small II ph Trials in CCMet

CCLOC (imbalanced arms)

SABR-COMET (OS advantage not significant imbalanced arms)





Gli Studi che hanno cambiato la pratica clinica: Novità 2023

**IASLC** 

Check for updates

#### Oligomets + RT CONTROVERSIES IN THORACIC ONCOLOGY Local Treatments of Oligometastatic and Oligoprogressive NSCLC Should Become the Standard of Care Gregory M. M. Videtic, MDCM, FRCPC, FACR, FASTRO\* No III ph Trials (Iyengar/Gomez early closed) • But..Gomez : Systemic + Local therapy Systemic VS PFS 4.4 m VS OS 17.2 m VS SABR-COMET(18p) Palliative • VS

17.7 %

41.1 m Palliative + Local therapy 42,3 % (p<0.006) VS

14.2 m

In OMD, LC by SABR/S reduces deaths and prevents the risk of new mets

**ROMA** 25 GENNAIO 2024

5 yr OS



Gli Studi che hanno cambiato la pratica clinica: Novità 2023

## Spotlight

Should stereotactic radiotherapy be the preferred treatment for

www.thelancet.com/oncology Vol 22 August 2021

oligometastatic disease?

**Opening opinion: Yes** \*David Palma, Alison Tree

- No surgery advantages in OMD III Phase Trial
- **Excellent** Local Control
- Low Toxicity
- No interruption systemic treatment •
- Contemporary treatment of multiple lesions

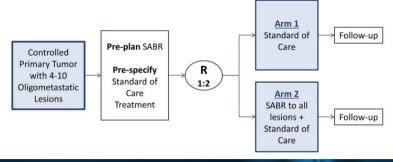


...

Gli Studi che hanno cambiato la pratica clinica: Novità 2023

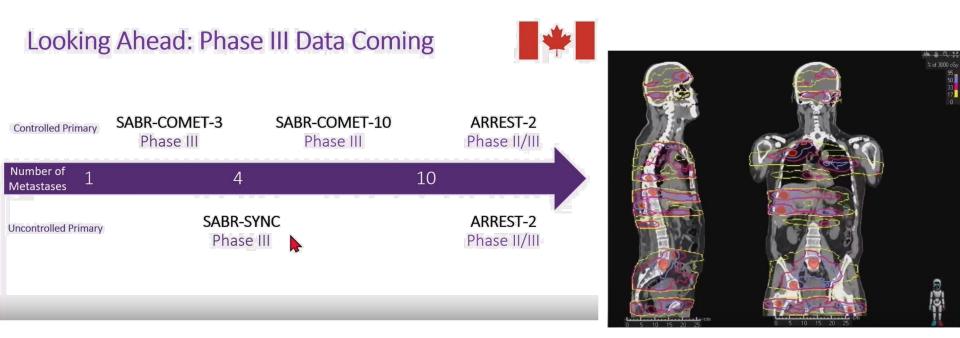
Dr. David Palma, MD PhD @drdavidpalma · 8 dic 2023 We made it! Today we completed accrual for the SABR-COMET-10 trial!

As far as I know, it's the first phase III oligomets trial to complete accrual.


A few thoughts below...

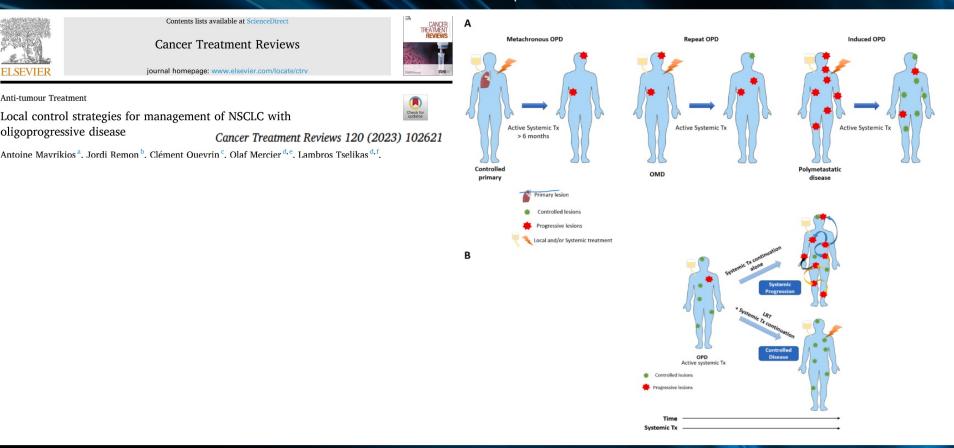


Stereotactic ablative radiotherapy for the comprehensive treatment of 4–10 oligometastatic tumors (SABR-COMET-10): study protocol for a randomized phase III trial Palma et al. BMC Cancer (2019) 19:816 https://doi.org/10.1186/s12885-019-5977-6 David A. Palma <sup>M</sup>, Robert <u>Olson</u>, <u>Stephen Harrow</u>, <u>Rohann J. M. Correa</u>, <u>Famke Schneiders</u>, <u>Cornelis J. A.</u>


195 pts Stratification : Histology Systemic Therapy

SABR:20/1,30/3,35/5 Pr. EP: OS Sec.EP: PFS,QoL, Tox






*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 





#### Gli Studi che hanno cambiato la pratica clinica: Novità 2023





Gli Studi che hanno cambiato la pratica clinica: Novità 2023



Contents lists available at ScienceDirect **Cancer Treatment Reviews** 

iournal homepage: www.elsevier.com/locate/ctrv



Anti-tumour Treatment

Local control strategies for management of NSCLC with



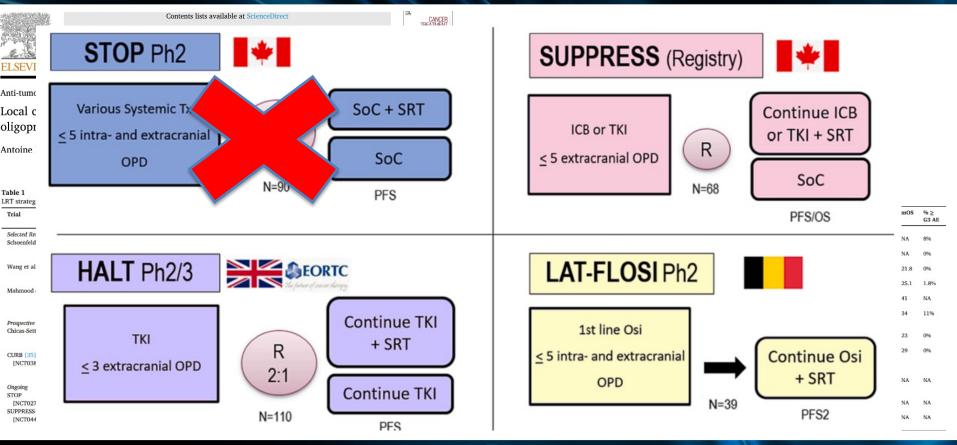
oligoprogressive disease

Cancer Treatment Reviews 120 (2023) 102621

Antoine Mavrikios<sup>a</sup>, Jordi Remon<sup>b</sup>, Clément Ouevrin<sup>c</sup>, Olaf Mercier<sup>d,e</sup>, Lambros Tselikas<sup>d,f</sup>.

#### Table 1

LRT strategies for NSCLC with OPD receiving ICB.


| LEGI SUATEgies IOI NOCI         | te with or b let      | civing ion.                |                      |            |               |                         |                       |                        |                           |                           |              | Latt restite                               |
|---------------------------------|-----------------------|----------------------------|----------------------|------------|---------------|-------------------------|-----------------------|------------------------|---------------------------|---------------------------|--------------|--------------------------------------------|
| Trial                           | Design                | N NSCLC                    | MUT+                 | N<br>OPD   | Brain<br>mets | mFU                     | Drug                  | Type of<br>LRT         | mPFS2                     | mOS                       | % ≥<br>G3 AE | Trial                                      |
| Selected Retrospective          |                       | 2005                       | ne (1997)            |            | 10.00         | 15.2                    | a waadaa              | 1980603                | 1504.04                   | 5.0.02                    |              | Selected Re<br>Weickhard                   |
| Schoenfeld et al. [10]          |                       | 57                         | 0/57                 | ≤ 3        | Yes           | 16                      | Anti-PD(L)<br>1 ICB   | XRT,<br>Surgery,<br>RE | NA                        | NA                        | NA           | [36]<br>Gan et al.                         |
| Wang et al. [31]                |                       | 24                         | 7/24: 4<br>KRASm,    | $\leq 2$   | Yes           | 28                      | Anti-PD(L)<br>1 ICB   | SRT                    | 11                        | 34                        | 8%           | Hu et al. [                                |
| Mahmood et al. [32]             |                       | 59/120                     | 3 EGFRm<br>34/59: 29 | <b>≤</b> 5 | Yes           | 16                      | ICB +/-               | SRT, XRT               | 6.4                       | 29.8                      | 0.8%         | Mok et al.                                 |
| Mannood et al. [52]             |                       | 39/120                     | KRASm, 4<br>EGFRm, 1 | 20         | 103           | (whole<br>cohort)       | Various Tx            | SKI, AKI               | (whole<br>cohort)         | (whole<br>cohort)         | 0.070        | Yu et al.                                  |
|                                 |                       |                            | ALKm                 |            |               | conorty                 |                       |                        | conorty                   | conort)                   |              | Hubbeling                                  |
| Prospective                     |                       |                            |                      |            |               |                         |                       |                        |                           |                           |              |                                            |
| Chicas-Sett et al. [33]         | Single arm<br>phase 2 | 31/50                      | 4/50                 | ≤ 5        | Yes           | 33<br>(whole<br>cohort) | Anti-PD1<br>ICB       | SRT                    | 14.2<br>(whole<br>cohort) | 37.4<br>(whole<br>cohort) | 0%           | Li et al. [4<br>Prospective<br>Weiss et al |
| CURB [35]<br>[NCT03808662]      | Randomized<br>phase 2 | 59/102<br>(stopped,<br>160 | 8/59                 | $\leq 5$   | No            | 52                      | Various               | SRT                    | 10.1<br>(SRT)<br>vs 2.1   | NA                        | 0.9%         | weiss et a                                 |
|                                 |                       | planned)                   |                      |            |               |                         |                       |                        |                           |                           |              | Kim et al.                                 |
| Ongoing<br>STOP                 | Randomized            | 90                         | NA                   | 15         | Yes           | NA                      | Mariana               | SRT                    | NA                        | NA                        | NA           | [NCT02]                                    |
| [NCT02756793]                   | phase 3               | 90                         | NA                   | ≤ 5        | res           | NA                      | Various               | SKI                    | INA                       | NA                        | NA           | Ongoing<br>LAT-FLOS                        |
| SUPPRESS-NSCLC<br>[NCT04405401] | Randomized<br>phase 2 | 68                         | NA                   | ≤ 5        | No            | NA                      | Various<br>ICB or TKI | SRT                    | NA                        | NA                        | NA           | [NCT04:<br>HALT<br>[NCT03:                 |

| Table 2<br>LRT results in ( | oncogene-addicted NS | CLC with OPD re | ceiving TKI. |   |
|-----------------------------|----------------------|-----------------|--------------|---|
| Trial                       | Design               | N NSCLC         | MUT+         | N |

| Trial                            | Design                  | N NSCLC                           | MUT+                           | N<br>OPD     | Brain<br>mets | mFU | Drug                                           | Type of LRT             | mPFS2 | mOS  | % ≥<br>G3 AE |
|----------------------------------|-------------------------|-----------------------------------|--------------------------------|--------------|---------------|-----|------------------------------------------------|-------------------------|-------|------|--------------|
| Selected Retrospective           |                         |                                   |                                |              |               |     |                                                |                         |       |      |              |
| Weickhardt et al.<br>[36]        |                         | 25                                | 15 ALKm,<br>10 EGFRm           | ≤ 4          | Yes           | 9   | Crizotinib, Erlotinib                          | SRT, XRT,<br>Surgery    | 6.2   | NA   | 8%           |
| Gan et al. [37]                  |                         | 14                                | ALKm                           | ≤ 4          | No            | 12  | Crizotinib                                     | SRT, HRT,<br>Surgery    | 5.5   | NA   | 0%           |
| Hu et al. [38]                   |                         | 33                                | EGFRm                          | <u>≤</u> 5   | Yes           | 18  | Erlotinib, Gefitinib,<br>Icotinib              | SRT, XRT                | 6.5   | 21.8 | 0%           |
| Mok et al. [39]                  |                         | 55                                | EGFRm                          | ≤ 5          | Yes           | 13  | Erlotinib, Gefitinib,<br>Afatinib, Osimertinib | SRT                     | 6.9   | 25.1 | 1.8%         |
| Yu et al. [40]                   |                         | 18                                | EGFRm                          | < 5          | No            | NA  | Erlotinib, Gefinitib                           | Surgery,<br>XRT, RFA    | 10    | 41   | NA           |
| Hubbeling et al. [41]            |                         | 61                                | 37 ALKm,<br>12 ROS1, 12<br>RET | 57/61<br>≤ 5 | Yes           | 28  | Various TKI                                    | XRT,<br>Surgery,<br>PTA | 6.8   | 34   | 11%          |
| Li et al. [42]<br>Prospective    |                         | 15                                | EGFRm                          | 1            | No            | NA  | Erlotinib, Gefitinib                           | РТА                     | 8     | 23   | 0%           |
| Weiss et al. [43]                | Single arm<br>phase 2   | 25<br>(stopped,<br>40<br>planned) | EGFRm                          | $\leq 3$     | Yes           | NA  | Erlotinib                                      | SRT                     | 6     | 29   | 0%           |
| Kim et al. [44]<br>[NCT02759835] | Single arm<br>phase 2   | 8<br>(ongoing)                    | EGFRm                          | $\leq 5$     | Yes           | NA  | Osimertinib                                    | XRT,<br>Surgery         | 2.3   | NA   | NA           |
| Ongoing                          | 01-1                    |                                   | ROPP                           | - 0          |               |     | 0.1                                            | 0.00                    |       |      |              |
| LAT-FLOSI<br>[NCT04216121]       | Single arm<br>phase 2   | 39                                | EGFRm                          | <b>≤</b> 3   | Yes           | NA  | Osimertinib                                    | SRT                     | NA    | NA   | NA           |
| HALT<br>[NCT03256981]            | Randomized<br>phase 2-3 | 110                               | Mutated<br>(Various)           | $\leq 3$     | No            | NA  | Various TKI                                    | SRT                     | NA    | NA   | NA           |



*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 



ROMA 25 GENNAIO 2024

Associazione Italiana Radioterapia e Oncologia clinica

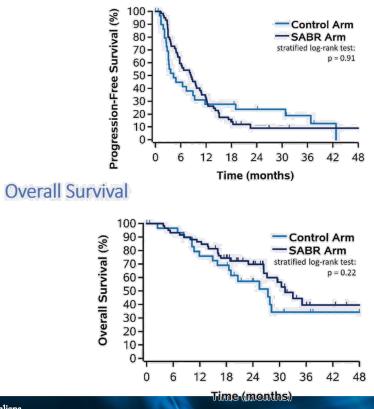
*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

#### BC CAN CER





#### The Stereotactic Ablative Radiotherapy for Oligo-Progressive Cancers (STOP) Trial


Results from a Phase II, Multicentre, Randomized Trial

## Results – Patient Demographics

- Mean age of 67
- 43% were Female
- 95% were ECOG 0/1
- 14% cytotoxic chemo
- 27% immunotherapy

|                                                                                                     | ACTOO                           | 2022                           |
|-----------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|
| Characteristic                                                                                      | Control (31)                    | SABR (59)                      |
| Primary Histology (%)<br>Lung<br>Breast<br>Gastrointestinal<br>GU Kidney<br>GU Prostate<br>(others) | 58<br>10<br>13<br>6<br>6        | 37<br>15<br>10<br>12<br>12     |
| Radiated Site (%)<br>Lung<br>Bone<br>Liver<br>Adrenal<br>Lymphnode<br>Brain                         | 55<br>13<br>10<br>10<br>13<br>0 | 44<br>25<br>14<br>5<br>22<br>3 |
| Number of <u>Progressing</u> lesions (%)<br>1<br>2<br>3<br>4<br>5                                   | 73<br>20<br>7<br>0<br>0         | 67<br>26<br>2<br>4<br>2        |

#### **Progression Free Survival**





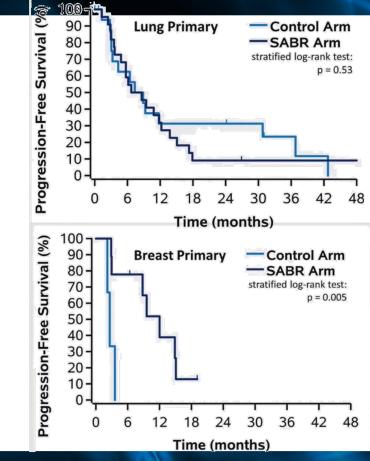
Gli Studi che hanno cambiato la pratica clinica: Novità 2023







#### The Stereotactic Ablative Radiotherapy for Oligo-Progressive Cancers (STOP) Trial

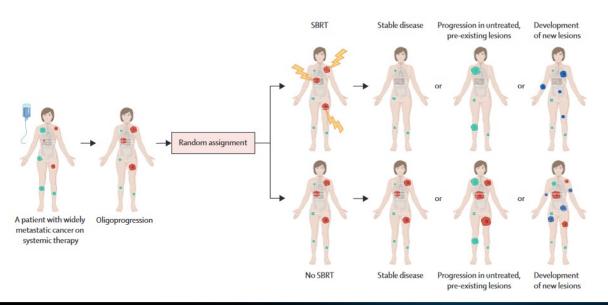

Results from a Phase II, Multicentre, Randomized Trial

Every time you present a subgroup analysis

ASTRO – 2023 Devin Schellenberg BC Cancer

Justin Bieber writes a new song

So you want to do this cautiously and interpret these results carefully.






Gli Studi che hanno cambiato la pratica clinica: Novità 2023

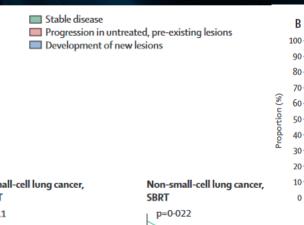
Standard-of-care systemic therapy with or without stereotactic body radiotherapy in patients with oligoprogressive breast cancer or non-small-cell lung cancer (Consolidative Use of Radiotherapy to Block [CURB] oligoprogression): an open-label, randomised, controlled, phase 2 study

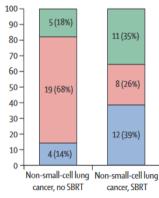
Chiaojung Jillian Tsai, Jonathan T Yang, Narek Shaverdian, Juber Patel, Annemarie F Shepherd, Juliana Eng, David Guttmann, Randy Yeh,

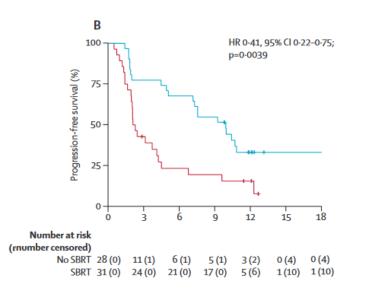


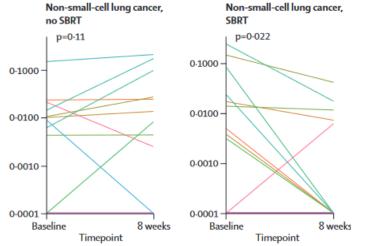
@ 🖒 🖲

|                                                       | Non-small-cell lung cancer |             |
|-------------------------------------------------------|----------------------------|-------------|
|                                                       | SOC (n=28)                 | SBRT (n=31) |
| Median age, years                                     | 70 (65-74)                 | 71 (62–76)  |
| Sex                                                   |                            |             |
| Female                                                | 12 (43%)                   | 19 (61%)    |
| Male                                                  | 16 (57%)                   | 12 (39%)    |
| Received immunotherapy                                |                            |             |
| Yes                                                   | 23 (82%)                   | 24 (77%)    |
| No                                                    | 5 (18%)                    | 7 (23%)     |
| Number of oligoprogressive lesions                    |                            |             |
| 1                                                     | 8 (29%)                    | 9 (29%)     |
| 2-5                                                   | 20 (71%)                   | 22 (71%)    |
| Marker status                                         |                            |             |
| Driver mutation                                       | 3 (11%)                    | 5 (16%)     |
| No driver mutation                                    | 25 (89%)                   | 26 (84%)    |
| Triple-negative breast cancer                         | NA                         | NA          |
| Non-triple-negative breast cancer                     | NA                         | NA          |
| Total number of metastatic sites                      |                            |             |
| 1                                                     | 4 (14%)                    | 2 (6%)      |
| 2-5                                                   | 15 (54%)                   | 17 (55%)    |
| >5                                                    | 9 (32%)                    | 12 (39%)    |
| Had brain metastases                                  |                            |             |
| Yes                                                   | 5 (18%)                    | 4 (13%)     |
| No                                                    | 23 (82%)                   | 27 (87%)    |
| Number of lines of systemic therapies received        | 1 (1–2)                    | 2 (1–2)     |
| Synchronous metastasis at initial<br>cancer diagnosis | 14 (50%)                   | 17 (55%)    |





Gli Studi che hanno cambiato la pratica clinica: Novità 2023

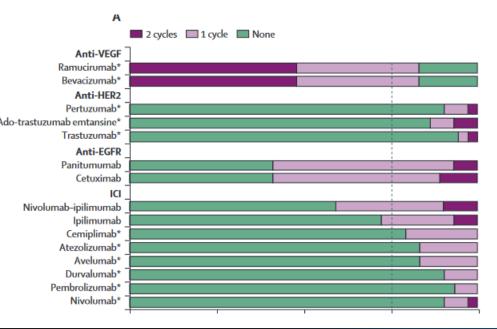

Standard-of-care systemic therapy with or without stereotactic body radiotherapy in patients with oligoprogressive breast cancer or non-small-cell lung cancer (Consolidative Use of Radiotherapy to Block [CURB] oligoprogression): an open-label, randomised, controlled, phase 2 study Lancet 2024: 403: 171-82

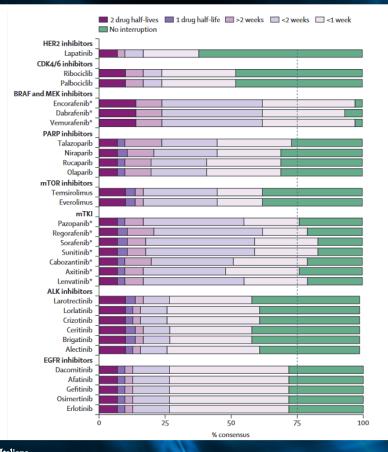

Chiaojung Jillian Tsai, Jonathan T Yang, Narek Shaverdian, Juber Patel, Annemarie F Shepherd, Juliana Eng, David Guttmann, Randy Yeh,

@ 🖒 🖲










*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

Metastases-directed stereotactic body radiotherapy in combination with targeted therapy or immunotherapy: systematic review and consensus recommendations by the EORTC–ESTRO OligoCare consortium





### ROMA 25 GENNAIO 2024



۵

*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

Metastases-directed stereotactic body radiotherapy in combination with targeted therapy or immunotherapy: systematic review and consensus recommendations by the EORTC-ESTRO OligoCare consortium



| Agents                                          | Drug                                                                | Suggestions                                                                                                                                                                                                                                                                            |
|-------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BRAF and MEK inhibitor                          | Vemurafenib and dabrafenib;<br>trametinib                           | Suspend 3 d before and after RT.<br>Suspend 1-2 d before and after RT.                                                                                                                                                                                                                 |
| EGFR and ALK inhibitor                          | Cetuximab; erlotinib and gefitinib; cri-<br>zotinib and osimertinib | Suspend the week of radiation if SBRT. Suspend 1-2 d before and after RT. Suspend $\geq$ 2 d before and after RT.                                                                                                                                                                      |
| VEGF inhibitor                                  | Bevacizumab; sorafenib and sunitinib                                | Suspend 4 weeks before and after RT.<br>Suspend 5-10 d before and after RT.                                                                                                                                                                                                            |
| Cyclin-dependent kinase (CDK)<br>inhibitors 4-6 | Palbociclib and ribociclib                                          | Suspend 3 d before and after RT.                                                                                                                                                                                                                                                       |
| Immunotherapy                                   | Ipilimumab; other                                                   | Suspend 2 d before and after RT if 8 Gy in single fraction to bone. Insufficient data to recommer<br>with moderate and ultrafractionation RT; caution suggested on an individual basis.                                                                                                |
| HER2 target therapy                             | Trastuzumab and pertuzumab; lapati-<br>nib; T-DM1                   | Generally safe to use concomitantly with RT. Insufficient data to recommend with moderate and<br>ultrafractionation RT; caution suggested on an individual basis. Insufficient data to recommen-<br>with moderate and ultrafractionation RT; caution suggested on an individual basis. |

Abbreviations: ALK = anaplastic lymphoma kinase; EGFR = epidermal growth factor; CDK = radiation therapy; SBRT = stereotactic body RT; VEGF = vascular endothelial growth factor; CDK = cyclin-dependent kinase; TDM1 = trastuzumab emtansine.

Guimond E, Tsai CJ, Hosni A, O'Kane G, Yang J, Barry A. Safety and Tolerability of Metastasis-Directed Radiation Therapy in the Era of Evolving Systemic, Immune, and Targeted Therapies. Adv Radiat Oncol. 2022 Jul 14;7(6):101022.



*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

**Clinical Practice Guideline** 

Treatment of Oligometastatic Non-Small Cell Lung Cancer: An ASTRO/ESTRO Clinical Practice Guideline Practical Radiation Oncology<sup>®</sup> (2023) 13, 393–412



## Evidence in KQs based on PICOTS Population, Intervention, Comparator, Outcome, Timing, Setting framework

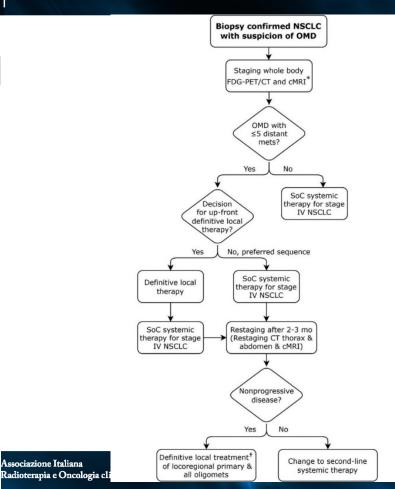
| KQ | Population                                                                                                   | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Comparator                                                                                | Outcomes                                                                                                             |
|----|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1. |                                                                                                              | nt/disease characteristics to select patients stemic and local therapies?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with oligometastatic N                                                                    | SCLC for definitive                                                                                                  |
|    | Adult patients with<br>oligometastatic NSCLC                                                                 | <ul> <li>Definitive local treatment of all disease<br/>sites, locoregional primary and<br/>metastases, with or without concurrent<br/>systemic therapy consisting of:</li> <li>Surgical excision</li> <li>Minimally invasive ablation (eg.<br/>RFA)</li> <li>RT (including conventionally<br/>fractionated, SABR, SBRT and SRS)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Standard of care<br/>systemic therapy<br/>or best supportive<br/>care</li> </ul> | Overall survival     PFS     Local control     Toxicity/QoL     DMFS     Time-to-switch to     another systemic ther |
| 2. | What are the selection crite<br>NSCLC?                                                                       | ria for choice of local treatment modality i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n the management of p                                                                     | atients with oligometast                                                                                             |
|    | Adult patients with<br>oligometastatic NSCLC                                                                 | Definitive local treatment of all<br>disease sites, locoregional primary<br>and metastases, with or without<br>consisting of therapy<br>consisting of therapy<br>or subject of the site of the<br>onsignation of the site of the site of the site of the<br>onsignation of the site of the site of the site of the<br>onsignation of the site of the site of the site of the<br>onsignation of the site of the site of the site of the<br>onsignation of the site of the site of the site of the site of the<br>onsignation of the site of the site of the site of the site of the<br>onsignation of the site of the site of the site of the site of the<br>onsignation of the site of the site of the site of the site of the<br>onsignation of the site of the site of the site of the site of the<br>onsignation of the site of the<br>site of the site of the<br>site of the site of the<br>site of the site of the s | None                                                                                      | Overall survival     PFS     Local control     Toxicity/QoL     DMFS     Time-to-switch to     another systemic ther |
| 3. | What are the appropriate se<br>oligometastatic NSCLC?                                                        | equencing and timing of systemic therapy a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and definitive local the                                                                  | rapies for patients with                                                                                             |
|    | Adult patients with<br>oligometastatic NSCLC                                                                 | <ul> <li>Definitive local treatment of all<br/>disease sites, locoregional primary<br/>and metastases, including surgical<br/>excision, minimally invasive ablation,<br/>and RT</li> <li>Systemic therapy (including targeted<br/>therapy, immunotherapy, chemotherapy, and combinations)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | None                                                                                      | Overall survival     PFS     Local control     Toxicity/QoL     DMFS     Time-to-switch to     another systemic then |
| 4. | What are the optimal dose-<br>oligometastatic NSCLCS                                                         | fractionation regimens, planning, and deli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | very technique of RT fo                                                                   | or patients with                                                                                                     |
|    | Adult patients with<br>oligometastatic NSCLC<br>receiving RT                                                 | <ul> <li>Definitive local treatment of all<br/>disease sites, locoregional primary<br/>and metatases, specifically as it<br/>relates to RT</li> <li>RT (including SBRT/SBRT-like,<br/>hypofractionation, conventionally-<br/>fractionated RT)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None                                                                                      | Overall survival     PFS     Local control     Toxicity/QoL     DMFS     Time-to-switch to     another systemic ther |
| 5. | After a definitive local there<br>upon disease progression                                                   | apy approach for oligometastatic NSCLC, v<br>n?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | what are the indication                                                                   | s for additional local the                                                                                           |
|    | Adult patients with<br>oligoprogression<br>or oligorecurrence<br>after definitive local<br>therapy for NSCLC | <ul> <li>Local therapy (definitive RT or<br/>surgery) of all new or progressive<br/>disease sites, locoregional primary<br/>and metastases</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Standard of care<br/>systemic therapy<br/>or best supportive<br/>care</li> </ul> | Overall survival     PFS     Local control     Toxicity/QoL     DMFS     Time-to-switch to                           |



Check for

Associazione Italiana

updates


Gli Studi che hanno cambiato la pratica clinica: Novità 2023

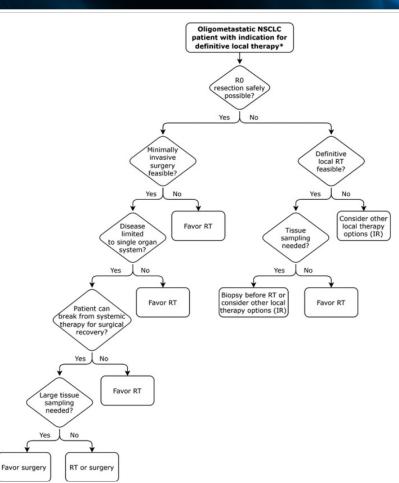
#### **Clinical Practice Guideline**

#### Treatment of Oligometastatic Non-Small Cell Lung Cancer: An ASTRO/ESTRO Clinical Practice Guideline Practical Radiation Oncology<sup>®</sup> (2023) 13, 393–412

#### Patient/disease characteristics for definitive systemic and local therapies Table 3

| KQ1 Recommendations                                                                                                                                                                                                                                   | Strength of<br>Recommendation | Quality of<br>Evidence (refs) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|
| 1. For patients with oligometastatic NSCLC, treatment decisions should be made using a patient-centered multidisciplinary team approach.                                                                                                              | Strong                        | Expert Opinion                |
| <ol><li>For patients with oligometastatic NSCLC, the integration of definitive local therapy is<br/>only recommended if technically feasible and clinically safe for all disease sites.</li></ol>                                                     | Strong                        | Moderate<br>8-10              |
| <ol> <li>For patients with oligometastatic NSCLC, a discussion of definitive local therapy as a<br/>component of multimodality treatment approach is recommended irrespective of<br/>presence of activating driver mutations.</li> </ol>              | Strong                        | Moderate<br>7-9               |
| 4. For oligometastatic NSCLC, definitive local therapy is recommended only for patients having up to 5 distant metastases, diagnosed with appropriate imaging.                                                                                        |                               | Moderate                      |
| <u>Implementation remark</u> : Despite some prospective trials including patients with up to 5 extracranial metastases, most patients enrolled had 1-2 treated oligometastatic lesions, which should be factored into decision-making.                | Strong                        | 7-10                          |
| <ol> <li>For patients with synchronous oligometastatic NSCLC, definitive local therapy to all<br/>cancer sites in addition to standard of care systemic therapy is conditionally<br/>recommended.</li> </ol>                                          | Conditional                   | Moderate<br>7-9               |
| <ol> <li>For patients with metachronous oligorecurrent NSCLC, definitive local therapy to all<br/>oligorecurrent cancer sites in addition to standard of care systemic therapy is<br/>conditionally recommended.</li> </ol>                           | Conditional                   | Low 10                        |
| <ol> <li>For patients with induced oligopersistent NSCLC, definitive local therapy to all persistent<br/>cancer sites in addition to standard of care systemic therapy is conditionally<br/>recommended.</li> </ol>                                   | Conditional                   | Low<br>8,9                    |
| <ol> <li>For patients with induced oligoprogressive NSCLC receiving systemic therapy, definitive<br/>local therapy to all progressive cancer sites is conditionally recommended while<br/>continuing the current line of systemic therapy.</li> </ol> | Conditional                   | Expert Opinion                |




Gli Studi che hanno cambiato la pratica clinica: Novità 2023

#### **Clinical Practice Guideline**

### Treatment of Oligometastatic Non-Small Cell Lung Cancer: An ASTRO/ESTRO Clinical Practice Guideline Practical Radiation Oncology<sup>®</sup> (2023) 13, 393–412

#### Table 4 Local treatment modality selection criteria for oligometastatic NSCLC

| KQ2 Recommendations                                                                                                                                                                                                                                                                                                                                                                                                             | Strength of<br>Recommendation | Quality of<br>Evidence (refs) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|
| <ol> <li>For patients with oligometastatic NSCLC, a patient-centered multidisciplinary discussion<br/>of the most appropriate local treatment strategy of RT and/or surgery either alone or in<br/>combination are recommended.</li> </ol>                                                                                                                                                                                      | Strong                        | Moderate 35                   |
| 2. For patients with oligometastatic NSCLC, RT and/or surgery are recommended as definitive local treatment modalities for the locoregional primary and all oligometastases.                                                                                                                                                                                                                                                    | Strong                        | Moderate*<br>7,8,10,35-40     |
| <ol> <li>For patients with oligometastatic NSCLC, highly conformal RT approaches and<br/>minimally invasive techniques for surgery are recommended to minimize morbidity.</li> </ol>                                                                                                                                                                                                                                            | Strong                        | Moderate<br>8-10,37,41,42     |
| <ul> <li>4. For patients with oligometastatic NSCLC, deciding between RT and surgery as the definitive local treatment modality should:</li> <li>Favor RT when multiple organ systems are being treated</li> <li>Favor RT when the clinical prioritization is to minimize breaks from systemic therapy</li> <li>Favor surgery when large tissue sampling is needed for molecular testing, to guide systemic therapy.</li> </ul> | Strong                        | Expert Opinion                |



### ROMA 25 GENNAIO 2024



Check for updates

*Gli Studi che hanno cambiato la pratica clinica: Novità 2023* 

#### **Clinical Practice Guideline**

### Treatment of Oligometastatic Non-Small Cell

Lung Cancer: An ASTRO/ES<sup>7</sup>. Guideline Practical Radiation Or

#### Table 6 RT dose-fractionation regimens, planning, and deliver

#### **KQ4** Recommendations

- For patients with oligometastatic NSCLC, appropriate staging with MRI, and MRI in cases of suspect or proven spine or liver metastas recommended.
- For patients with oligometastatic NSCLC, individual assessment of for targets in the lungs and upper abdomen using 4-D CT, fluorosc with appropriate motion compensation is recommended.
- For patients with oligometastatic NSCLC, highly conformal RT usi planning, appropriate motion management strategies and image-gu are recommended.
- 4. For patients with oligometastatic NSCLC, a risk adapted approach RT (preferred), hypofractionated RT, or alternatively definitive che on the location and burden of disease is recommended.
- For patients with oligometastatic NSCLC, definitive local RT shoul fractionations which achieve durable local control.

#### Implementation remarks:

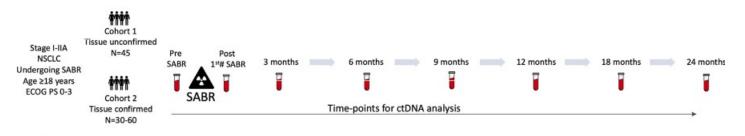
- Durable local control defined as minimum 85% local control at
- Higher BED<sup>10</sup> (typically >75 Gy) with SBRT alone is associated control.
- Lower BED<sup>10</sup> (50-75 Gy range) is associated with acceptable local control, typically in the setting of combination systemic therapy and SBRT.

- Wang XS, Bai YF, Verma V, et al. Randomized trial of first-line tyrosine kinase inhibitor with or without radiotherapy for synchronous oligometastatic EGFR-mutated NSCLC [e-pub ahead of print]. J Natl Cancer Inst. 2022:djac015. https://doi.org/10.1093/jnci/djac015, Epub ahead of print.
- Iyengar P, Wardak Z, Gerber DE, et al. Consolidative radiotherapy for limited metastatic non-small-cell lung cancer: A phase 2 randomized clinical trial. *JAMA Oncol.* 2018;4: e173501.
- Gomez DR, Tang C, Zhang J, et al. Local consolidative therapy vs. maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer: Long-term results of a multi-institutional, phase II, randomized study. J Clin Oncol. 2019;37:1558-1565.
- Palma DA, Olson R, Harrow S, et al. Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: Long-term results of the SABR-COMET phase II randomized trial. J Clin Oncol. 2020;38:2830-2838.

#### rogression (after definitive local therapy approach)

|                                                                                            | Strength of<br>Recommendation | Quality of<br>Evidence (refs) |
|--------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|
| gometastatic NSCLC<br>urrence, systemic                                                    | Strong                        | Expert Opinion                |
| gometastatic NSCLC<br>additional local therapy                                             | Strong                        | Expert Opinion                |
| gometastatic NSCLC<br>local therapy is                                                     | Conditional                   | Low                           |
| gometastatic NSCLC<br>at sites previously<br>inded if systemic<br>with toxicity acceptable | Conditional                   | Expert Opinion                |




### **Current Trial Report**

Detection of Circulating Tumor DNA After Stereotactic Ablative Radiotherapy in Patients With Unbiopsied Lung Tumors (SABR-DETECT)

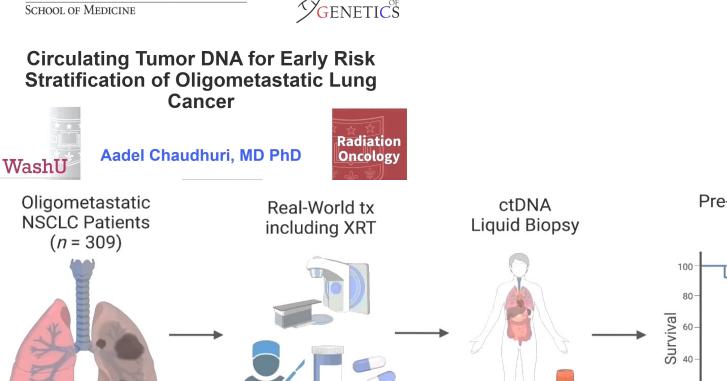
Saurav Verma,<sup>1,3</sup> Sympascho Young,<sup>2,3</sup> Thomas A.C. Kennedy,<sup>4</sup> Ilda Carvalhana,<sup>4</sup>

Gli Studi che hanno cambiato la pratica clinica: Novità 2023



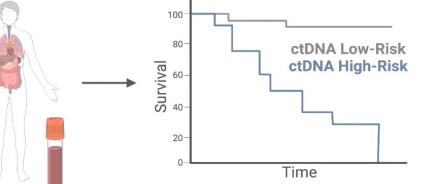


#### Endpoints


- Primary endpoint: Percentage of patients with MRD detected prior to or at the time of radiological recurrence, with longitudinal monitoring of ctDNA.
- Secondary endpoints: The percentage of patients with undetectable ctDNA at baseline who then develop detectable ctDNA after one fraction of SABR, increase in variant allelic frequency (vAF) or quantifiable ctDNA (mutant molecules/mL of plasma) from baseline to post-treatment samples, in patients with detectable ctDNA at baseline.



Washington University in St.Louis


SCHOOL OF MEDICINE

Gli Studi che hanno cambiato la pratica clinica: Novità 2023

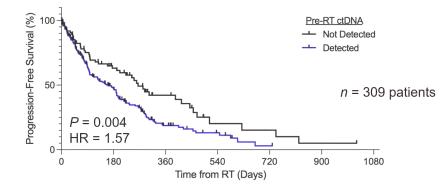


DEPARTMENT

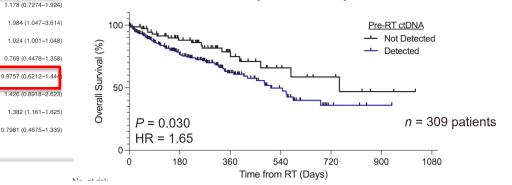
Pre-XRT risk stratification by ctDNA detection



Gli Studi che hanno cambiato la pratica clinica: Novità 2023


#### **Circulating Tumor DNA for Early Risk** Stratification of Oligometastatic Lung Cancer

### Multivariate Cox regression for PFS


1.0

PFS Hazard Ratio





#### ctDNA detection pre-XRT predicts OS



#### **ROMA** 25 GENNAIO 2024

0.20

Parameter

Gender (Female

Smoking Status

Initial Stage

Histology (Squamous) [p=0.0292]

Age at Diagnosis [p=0.0394]

Metastatic Organ Systems

Lines of Therapy [p=0.0001]

Select Mutations & Alterations

Pre-RT ctDNA Level (Maximum VAF) [p=0.0253]



PFS HR (95% CI)

3.781 (1.081-11.3

18.00

Gli Studi che hanno cambiato la pratica clinica: Novità 2023

# **Conclusions & Future Directions**

- We have exciting real-world data suggesting that ctDNA detection and levels can risk-stratify oligometastatic NSCLC
- Oligometastatic patients with low or undetectable ctDNA had improved survival outcomes with radiotherapy
- While ctDNA correlated with survival outcomes, the number of metastatic disease sites did not
- It will be fascinating to analyze ctDNA correlatives in ongoing oligometastatic SABR/SBRT studies
- We need to test ctDNA-based decision frameworks for consolidation SABR/SBRT for oligometastatic disease in

